Agenda

5G Phased Arrays

International Summer School on 5G Phased Arrays

Understanding of phased array operation requires multi- disciplinary approach, which is based on the antenna array, microwave circuit and signal processing theories. By bringing these three areas together, the school provides integral approach to phased array front-ends for 5G communication systems.

At the school the phased array foundations will be considered from antenna, RF technology and signal processing points of view. Realization of 5G capabilities such as high data-rate communication link to moving objects will be discussed. The education will be concluded by a design project.

The summer school is open for all young specialists and researchers from both industry and academia. The attendees should have basic knowledge about EM, electrical circuits and signal processing (graduate courses on electromagnetic waves, electrical circuits including microwave (RF) circuits, and signal processing).

Topics:

  • Foundations of antenna arrays
  • Antenna array topologies for 5G applications
  • Analog and digital beamforming in antenna arrays
  • Front-end architecture and performance
  • 5G applications and system requirements

    Additional information ...


PhD Thesis Defence

Front-End ASICs for 3-D Ultrasound: From Beamforming to Digitization

Chao Chen

Program:
12:00 - 12:15 Introductory presentation
12:30 - 13:30 Public defense
13:45 - 14:00 Diploma ceremony
Address: Senaatszaal of the Aula Congress Center

SUMMARY
This thesis describes the analysis, design and evaluation of front-end application-specific integrated circuits (ASICs) for 3-D medical ultrasound imaging, with the focus on the receive electronics. They are specifically designed for next-generation miniature 3-D ultrasound devices, such as transesophageal echocardiography (TEE), intracardiac echocardiography (ICE) and intravascular ultrasound (IVUS) probes. These probes, equipped with 2-D array transducers and thus the capability of volumetric visualization, are crucial for both accurate diagnosis and therapy guidance of cardiovascular diseases. However, their stringent size constraints, as well as the limited power budget, increase the difficulty in integrating in-probe electronics. The mismatch between the increasing number of transducer elements and the limited cable count that can be accommodated, also makes it challenging to acquire data from these probes. Front-end ASICs that are optimized in both system architecture and circuit-level implementation are proposed in this thesis to tackle these problems.
The techniques described in this thesis have been applied in several prototype realizations, including one LNA test chip, one PVDF readout IC, two analog beamforming ASICs and one ASIC with on-chip digitization and datalinks. All prototypes have been evaluated both electrically and acoustically. The LNA test chip achieved a noise-efficiency factor (NEF) that is 2.5 × better than the state-of-the-art. One of the analog beamforming ASIC achieved a 0.27 mW/element power efficiency with a compact layout matched to a 150 µm element pitch. This is the highest power-efficiency and smallest pitch to date, in comparison with state-of-the-art ultrasound front-end ASICs. The ASIC with integrated beamforming ADC consumed only 0.91 mW/element within the same element area. A comparison with previous digitization solutions for 3-D ultrasound shows that this work achieved a 10 × improvement in power-efficiency, as well as a 3.3 × improvement in integration density.

The dissertation can be found in the TU Delft repository: http://doi.org/10.4233/uuid:a5002bb0-4701-4e33-aef6-3c78d0c9fd70

Additional information ...