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Chapter 1

Contact and Support

This document serves as a manual for the Transmission Line Tool which is freely accessible
and can be downloaded at http://terahertz.tudelft.nl/Research/project.php?id=74&
ti=27. The tool is developed by the Tera-Hertz Sensing Group, Dept. of Microelectronics at
Delft University of Technology.

For questions or reporting any bugs, don’t hesitate writing an e-mail to:

Sven van Berkel – s.l.vanberkel@tudelft.nl

The tool allows for characterizing printed transmission lines. The quasi-analytical model used
in this software-tool is described in the paper submitted for The 9th European Conference
on Antennas and Propagation, held in Lisbon, Portugal, on 12-17 April 2015 [1]. It also gives
some examples of the capabilities of the tool. For a more rigorous description of the theory
behind the software-tool we refer to the MSc-thesis of Sven van Berkel which can be found
(here) in the repository of Delft University of Technology.

The software tool is developed using MATLAB R2015b on a Windows 7 64-bit operating
system and compiled into a stand-alone version which does not require a MATLAB-license.
Instead, MATLAB Compiler Runtime will be downloaded and installed automatically, pro-
viding all the libraries and run-time engines needed by the software-tool. In the case the
program is not working (properly) on other computer platforms please contact us.

Please don’t hesitate contacting us when other stratifications or features of the program are
desired; we will be happy to implement it.
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Chapter 2

Installation

To install or uninstall the software-tool please follow the following steps.

1. Install

(a) Extract the zip-file TransmissionLineCalculator_v2-2.zip to a preferred location.
(b) Open TransmissionLineCalculator_Installer.exe
(c) If User Account Control shows the following popup, click Yes.

(d) Loading the installer can take a few moments. Click Next.
(e) Choose a preferred installation folder and/or add a shortcut to the desktop if

desired. Click Next:
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(f) If the installer shows the following popup, click Yes.

(g) The Installer will check if MATLAB Compiler Runtime is already installed at
the computer. This program is required to run this program without having a
MATLAB-license. If it is not installed, click Next, accept the license agreement,
and it will be downloaded and installed by the Installer in the selected installa-
tion folder. This MATLAB compiler is quite large (582 MB) so downloading and
installing will take a few minutes.

(h) After installation, the program can be found in the start menu of windows. Starting
the program always can take a few minutes as it loads the required MATLAB-
engines and libraries.

2. Uninstall

(a) Go to Start and click Control Panel:

(b) Go to Programs and Features:

Characterization of Printed Transmission Lines Tera-Hertz Sensing Group - TU Delft



5

(c) Select TransmissionLineCalculator and click Uninstall/Change:

(d) Click Uninstall
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Chapter 3

User interface

Examples for the input and output windows are shown in Figure 3-1 and Figure 3-3 respec-
tively. The panels and its components of the input window will be explained.

3-1 Select a structure

The supported structures are:

• Strip

• Coupled stripes

• Microstrip

• Coupled Microstrip

• Stripline

• Coplanar Waveguide

• Grounded Coplanar Waveguide

If there are any structures missing which can be represented with stratified media, you can
let us know.

3-2 Simulation parameters

The start (fi) and stop (ff ) frequencies determine the frequency range over which the trans-
mission line is analyzed. The number of discrete frequency points Nf taken is a function
of these frequencies and the frequency step factor kstep. The program starts at the highest
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3-3 Conductors 7

Figure 3-1: Graphical User Interface

frequency and determines the next frequency as fi+1 = fi −∆f where ∆f = kstep · fi. The
number of frequency points calculated will then be:

Nf =
⌈

ln (fi/ff )
ln (1− kstep)

⌉
+ 1 (3-1)

The standard setting for fstep = 0.04. This setting can be changed under Advanced Set-
tings when desired. Increasing this number will speed up the code, however enlarging this
frequency-step too much can result in difficulties in tracking the propagation mode.

The unit given at Losses unit determines the unit in which the total losses of the transmission
line is displayed (see left-bottom plot in Figure 3-3). The total losses are calculated from the
imaginary part of the wavenumber. For normalization to /λ0 or /λeff , the attenuation is mul-
tiplied with the wavelength in free-space (λ0 = c

f ) or the true wavelength of the propagating
mode (λeff = c

f
√
εeff

) respectively, where εeff = ( kk0
)2 is the effective dielectric constant.

3-3 Conductors

In the used model, the conductors are modeled as infinitesimal. The program assumes that
the transversal current distribution along the slot or strip, ct(y), verifies the quasi-static edge
singularities:

Characterization of Printed Transmission Lines Tera-Hertz Sensing Group - TU Delft



3-3 Conductors 8

ct(y) = 2
wsπ

1√
1− ( 2y

ws
)2

for −ws/2 ≤ y ≤ ws/2 (3-2)

In order to fulfill to this assumption, the width of the slot or strip must be much smaller than
the wavelength: ws � λ. In the tool, the width is restricted to be smaller than λ0/4.

Conductor losses are also implemented. In the tool, the conductors are modeled to be in-
finitesimal. However, a change in surface impedance due to the finiteness of the conductor is
implemented in the software tool using the surface-impedance given in (3-3) [2].

Zs = RRF

1− e−
RRF
RDC

(3-3)

where RDC = 1
σt and RRF = (1+j)

√
πµ0f
σ with thickness t, conductivity σ and the free-space

permeability µ0. Ohmic losses in ground-planes for both slot-type and strip-type transmission
lines can easily be implemented in the GF of the stratified media using a load which is equal
to the high-frequency surface impedance Zgnd = RRF . The conductor losses for the main
conductor of a strip-type transmission line are accounted for by means of a surface impedance
boundary condition.

Since the conductors are modeled to be infinitesimal, the electric current in the EFIE flowing
on the top of the conductor is considered to be equal to the current flowing on the bottom
of the conductor. However, for a microstrip on top of a dense dielectric slab, the current
will mainly flow on the bottom of the conductor. This will have its influence on the effective
surface impedance of the conductor. This current ratio can be approximated by making an
assumption of the change in field distribution using the phase constant of the propagating
mode: rj = 2 βmode

(β1+β2) were β1 and β2 are the phase constants of the adjacent media. The
current ratio rj is then used to define an equivalent high-frequency resistance R′RF = rjRRF
[2].

For slot-type transmission lines, since the IE is different, the conductor losses can be calculated
by following the approach proposed in [3]. The approach is based on applying the equivalence
principle on the slot region by replacing the slot region with the same lossy conductor as
the ground planes. The lossy conductor can then be implemented in the GF of the stratified
media by means of an impedance characterized by 2Zgnd, in series with the stratification. The
factor of two used here, arises as in the tool only the equivalent magnetic current is modeled,
whereas in [3] the equivalent electric current is also included.

In the software-tool, three different type of metals can be assigned:

3-3-1 PEC

A Perfect Electric Conductor (PEC) will have zero resistivity (infinite conductivity). The
used surface impedance is

Zs = 0 (3-4)
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3-4 Dielectrics 9

3-3-2 Normal metals

There are several pre-programmed normal metals implemented. For these metals, the resis-
tivity (and conductivity) is already implemented. It is possible to change this resistivity (or
conductivity) to the desired value.

3-3-3 Superconductor

A superconductor will be characterized by a complex conductivity σ1 + jσ2. The possible
input parameters are the real part of this complex conductivity σ1 and a sheet inductance
Ls. It is assumed that the superconductor is at low temperature so that σ1 � σ2. The used
surface impedance [4] will be calculated via:

Zs = Rs + jXs (3-5)

where

Rs = 1
λL

σ1
2σ2

2
(3-6)

Xs = jωµ0λL (3-7)

The given sheet inductance Ls can be used to calculate the London penetration depth λL and
the imaginary part of the complex conductivity σ2.

λL = Ls/µ0 (3-8)

σ2 = 1
µ0λ2

Lω
(3-9)

3-4 Dielectrics

In this panel, the stratifications can be characterized. The program allows for two finite
dielectric slabs and two infinite media. All of the slabs and media are characterized with a
relative permittivity εr.

3-4-1 Dielectric losses

Dielectric losses are also included via the loss tangent (tan (δ)). This loss tangent is used to
calculate the complex effective permittivity:

εr,lossy = εr − jεr tan (δ) (3-10)
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3-4 Dielectrics 10

3-4-2 Surface-wave losses

The heights of the dielectric are limited to H = 0.45λd, where λd = c
f
√
εr

is the wavelength in
the dielectric. When a transmission line is printed onto a dielectric slab, a surface-wave can
be excited. Surface-wave excitation becomes significant when the height of this dielectric slab
exceeds an electrical length of approximately λd/4. For this reason, taking into account these
surface-waves are of particular importance for printed transmission lines at high frequencies
where the minimum dimensions of the transmission line are limited by the technology.
The propagation constant along the transmission line will be between the propagation con-
stant of the dielectrics above and below the transmission line and will therefore leak into the
denser dielectric. The angle of radiation into the dielectric slab can be expressed as:

sin (θSFW ) = kx
kSFW

(3-11)

where θSFW is the angle of radiation in the substrate, kSFW is the propagation constant of
the surface-wave mode and kx is the propagation constant along the transmission line. It can
be seen that when kx > kSFW , θSFW will be imaginary and no leakage occurs. From this
equation the condition for exciting a surface-wave can directly be seen [5]:

kx < kSFW (3-12)

Three types of surface-waves are of interest.

• Transverse magnetic (TM) surface-waves

• Transverse electric (TE) surface-waves

• Transverse electromagnetic (TEM) surface-waves

The tool is able to account for the first surface-wave. However, additional surface-waves (such
as the TE1-surface wave) are not accounted for. The surface-waves accounted for, depending
on the structure to analyze, are:

• Strip and Coupled Stripes: TE0-surface-wave.

• Microstrip and Coupled Microstrip: TM0-surface-wave (or possibly TE0-surface-
wave when a higher dense dielectric slab is on top of the microstrips)

• Stripline: TM0-surface-wave.

• Slot and CPW: TM0-surface-wave.

• Grounded CPW: TEM -surface-wave and possibly a TM0-surface-wave in the dielec-
tric slab on top of the grounded CPW.

In the paper [1] and the MSc-thesis it is shown that the amount of power going into such
surface-wave at H = λd/2 is already comparable with the radiation into an infinite dielectric.
Therefore, the slab can be modeled as an infinite dielectric when the amount of losses due to
surface-waves needs to be studied for slab heights H > λd/2.
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3-5 Mode of excitation 11

Magnetic
Wall

Electric
Wall

a) Common mode excitation

b) Differential mode excitation

Figure 3-2: Electric field lines for Common and Differential mode excitation for a coupled
microstrip

3-5 Mode of excitation

The mode of excitation is applicable for coplanar transmission lines. These are:

• Coupled Stripes

• Coupled Microstrip

• Coplanar Waveguide

• Grounded Coplanar Waveguide

Typically, transmission lines are differentially excited. Common excitation can be used in
order to enhance radiation. The definitions of Differential- and Common mode excitation for
a coupled microstrip is shown in Figure 3-2 by means of the electric-field lines.

3-6 Warnings

In this panel, info, warnings and errors will be displayed. When an error is displayed, the
program will not run before the problem is solved. Errors occur when the parameters are not
valid (e.g. parameters are not a number or a slab is higher than λd/2 [see section 3-4]). After
a simulation, info (or warnings) appear about the convergences of integration or tracking the
wavenumber. In the command window for every frequency point, the ∆Int and ∆k will be
displayed while the warning panel in the GUI will only show the highest deviation from the
convergence goal.
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3-6 Warnings 12

3-6-1 Wavenumber accuracy

The wavenumber accuracy informs about the convergence in tracking the wavenumber. The
program is based on providing an initial guess for the wavenumber and by using a first order
Taylor series expansion around this initial guess point it will iterate towards the true value
of the wavenumber:

D(kx) ≈ D(kguess) +D′(kguess)(kx − kguess) (3-13)

So that

knewguess ≈ kguess − kcorrection (3-14)

kcorrection = D(kguess)
D′(kguess)

(3-15)

This iteration is repeated for a maximum of nk (default nk = 10) times or when a convergence
∆k (default ∆k= 5e-5) is achieved:

∆k =
∣∣∣∣kcorrectionkguess

∣∣∣∣ (3-16)

The meaning of D(kx) is explained in the paper [1] and represents the average transverse
electric, or magnetic, field radiation on the strip, or slot, by the equivalent currents. When
the convergence in tracking the wavenumber is consistently not reached consider to change
nk and/or ∆k in the Advanced Program Settings [section 3-7]. However, keep in mind that
changing these settings can influence the performance of the program significantly.

3-6-2 Integration convergence

The integration convergence informs whether the convergence goal is achieved in the numerical
integration. The value for D(kx) in Equation 3-13 is obtained by integrating in the transversal
spectral domain of the transmission line (ky). The integration domain in ky will be increased
as long as the increased part of the integration domain adds a significant value to the total.
What is called a significant value is defined by ∆Int (default ∆Int= 5e-5). The integration is
also stopped when a maximum number of integration intervals is used defined by nint (default
nint = 300).

The size of the integration step is determined by the integrand of the space-convolution
integral D(kx) as it contains a Bessel- and/or sinc-function and thus zeros. In the case that
the integration is unfortunately done from a zero to a zero, the convergence constrain can be
met incorrectly. So first the location of the zeros of the integrand is checked
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sinc
(
kyws

2

)
= 0

ky,0ws
2 = n · π

ky,0 = n · 2π
ws

for n = 1, 2, .... The integration step-size is chosen to be between the 10th and 11th zero of
the integrand:

ky,integration−step = 10.5 · 2π
ws

(3-17)

The procedure in MATLAB is as follows. First the integrand of D(kx) will be integrated from
−ky,integration-step to +ky,integration-step which we denote as D1(kx):

D1(kx) =
∫ +ky,int−step

−ky,int−step

· · ·dky (3-18)

After that we will calculate the following contribution of the integral:

D2(kx) =
∫ −ky,int−step

−2·ky,int−step

· · ·dky +
∫ +2·ky,int−step

+ky,int−step

· · ·dky (3-19)

From these two values, the convergence can be checked by comparing the contribution of the
most actual integration with the total integration:

∆Int = D2(kx)
D1(kx) +D2(kx) (3-20)

When the convergence in integration is consistently not reached, consider to change nint
and/or ∆Int in the Advanced Program Settings [section 3-7]. However, keep in mind that
changing these settings can influence the performance of the program significantly.

3-7 Advanced Program Settings

In the Advanced Program Settings window, some parameters influencing the program’s work-
ing operation can be changed. This may be desired in order to speed up the program or in
the case troubles occur in the convergences of integration and/or tracking the wavenumber.
Care have to be taken in adjusting these values as the accuracy and reliability of the program
can be changed significantly.
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3-7-1 Simulation settings

In this panel, the frequency step factor (kstep) can be defined. The procedure is explained in
section 3-2; The number of discrete frequency points Nf taken is a function of the frequency
step factor kstep. The program starts at the highest frequency and determines the next
frequency as fi+1 = fi −∆f where ∆f = kstep · fi. In the case when a very large frequency
range is analyzed, it can be desired to increase kstep in order to speed up the code.

3-7-2 Wavenumber tracking settings

In this panel the wavenumber tracking convergence goal (∆k) and maximum number of track-
ing iterations (nk) can be defined. The procedure of integration in the program is explained
in subsection 3-6-1. With first order Taylor series expansions around an initial guess point
it will iterate towards the true value of the wavenumber: knewguess ≈ kguess − kcorrection where
kcorrection = D(kguess)

D′(kguess) This iteration is repeated for a maximum of nk times or when a conver-

gence ∆k is achieved
(

∆k =
∣∣∣∣kcorrection

kguess

∣∣∣∣). When the program is having trouble in converging

to the wavenumber, a first-order Taylor expansion might be not sufficient. However, one can
try to increase kint or accept to loosen up ∆Int.

3-7-3 Integration settings

In this panel the integration convergence goal (∆Int) and maximum number of taken integra-
tion intervals (nint) can be defined. The procedure of integration in the program is explained
in subsection 3-6-2. Each integration steps integrates ky,integration-step = 10.5 · 2π

ws
with a maxi-

mum integration range of −nint ·ky,integration-step ≤ ky ≤ nint ·ky,integration-step. The integration
is also stopped when the convergence goal ∆Int is achieved. When the program is having
trouble in converging the integration, the ∆Int might be numerically unachievable or kint
should be increased.

3-8 Output of program

The output of the program (see Figure 3-3) is composed out of four figures:

• The complex normalized wavenumber

• The effective dielectric constant

• The characteristic impedance

• Losses

The complex wavenumber (β+jα) is the solution of the program from where we can calculate
some other interesting properties of the transmission line.
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Figure 3-3: Example of the tool’s output window with a verification from full-wave simulations
using CST Microwave Suite.

εr,eff =
(
β

β0

)2
(3-21)

Z0 = −2j
D′(kguess)

(For slot-type lines) [6] (3-22)

Z0 = D′(kguess)
−2j (For strip-type lines) [6] (3-23)

Loss = −8.686 · α c

f
√
εr,eff

[dB/λeff ] (3-24)

The losses can not only be depicted in terms of λeff as is explained in section 3-2 but also in
other units. The losses are a superposition of:

• Radiation losses

• Surface-wave losses

• Ohmic losses

• Dielectric losses

If one would like to see the individual contributions, the simulation should be run multiple
times eliminating the ohmic- and/or dielectric losses.
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Appendix A

MSc-thesis

This appendix contains the MSc-thesis of Sven van Berkel. This software-tool is developed
based on the theory discussed in this thesis. The thesis can be downloaded here from the
repository of Delft University of Technology.
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Preface

In this contribution, a quasi-analytical model is proposed allowing for fast characterization of a wide
variety of printed transmission lines in terms of characteristic impedance, effective dielectric constant
and losses. These losses are composed out of conductor losses, dielectric losses and radiation losses due
to space and surface wave excitation. For printed transmission lines these latter losses are of particular
importance when the transverse dimensions of the transmission lines become significant in terms of
wavelength. The quasi-analytical model proposed in this thesis is implemented in a software tool, which
is now rendered freely accessible, and capable of accurately analyzing the most widely used transmission
lines. The software-tool can be downloaded at http://terahertz.tudelft.nl.

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in
Electrical Engineering at Delft University of Technology.

Sven van Berkel
Delft, April 2015
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Chapter 1

Introduction

1.1 Background

Transmission lines are of a great importance in high frequency system design and are often one
of the first components in the front-end of an antenna system. Poorly designed transmission
lines will result in a loss of power and can cause high reflections in the system. A system
designer would like to accurately predict the behavior of such transmission line. Printed Circuit
Board (PCB) is commonly used for fabricating transmission lines thanks to its low-cost and easy
fabrication. These transmission lines are referred to as printed transmission lines. However,
transmission lines fabricated with current printed circuit board technologies are limited in its
dimensions. Typical critical transverse dimensions are 100 µm in width and 127 µm in substrate
height.

The main parameters of printed transmission lines, such as the propagation constant, atten-
uation constant and characteristic impedance, can generally be approximated resorting to two
methods [1]. Firstly one could use full-wave simulations. These full-wave simulations are
based on the Integral Equation method (e.g. Galerkin’s method) [2–6], or Finite Difference
(FD) [7] methods. These methods are generally very time-consuming and also require expen-
sive licenses. Secondly, below 50 GHz, one can resort to quasi-static formulations [1, 8–10].
These formulations often make assumptions on the field distributions in the transmission line.
For example the wave propagation of a microstrip configuration is sometimes assumed to be
Transverse Electromagnetic; the characteristics of the configuration are then extracted from the
electrostatic capacitance and inductance of the structure.

However, referring to the minimum feasible dimensions of the printed transmission lines,
determined by the technology, the transverse dimensions of the transmission lines can become
significant in terms of the wavelength (∼ λ/20 in line width and∼ λ/4 in substrate height) when
the frequency increases ( f > 50GHz). When the transverse dimensions become significant in
terms of wavelength, dynamic phenomena in the line become non-negligible and can have a
significant influence on the main parameters of the transmission line. Also, the excitation of
leaky higher order modes causes radiation into space- and surface waves which launch power
within the dielectric slabs [11,12]. In fact, multiple modes can propagate simultaneously in the
transmission line [13]. These phenomena could be avoided resorting to micro-metric integrated
technology. However, one would like to still use low-cost printed circuit board technology
while minimizing the effects of these higher order modes. For example, a coplanar wave guide
(CPW), with a 100 µm minimum feasible dimension in width and spacing, will radiate while
excited in its differential propagation mode at higher frequencies ( f ≥ 50 GHz). It is desired to
study the significance of this radiation.

Quasi-static analysis does not suffice for predicting suchlike effects; one would like to know
the dispersion characteristics of a transmission line rather than the capacitance, resistance or

1
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inductance as in quasi-static analysis. In fact, there are no (quasi-)analytical tools for esti-
mating radiation losses into space- and surface-waves. Equivalent formulas exist for coplanar
transmission line surface-wave losses [11, 14]. However, these formulas are not applicable for
more complex structures dealing with multiple stratifications. Also the effect of the utilization
of superconductive materials on the propagation constant and characteristic impedance cannot
be easily estimated. A designer willing to carry out a detailed analysis of printed transmis-
sion lines will be obliged to resort to the use of full-wave simulations, which are very time-
consuming. Accordingly, a fast quasi-analytical model is presented in this thesis in order to be
able to characterize such structures, taking account of dynamic phenomena such as radiation or
surface-wave excitation.

1.2 Solution proposed in this thesis

This work proposes a quasi-analytical software tool for characterizing printed transmission lines
at high frequencies. The approach is called quasi-analytical, because the model performs nu-
merical integrations and derivations. The quasi-analytical model makes use of the transmission
line formalism [15]- [16]. The spectral Green’s functions used in this formalism represent the
solution to the integral equation of a magnetic or electric line current in the presence of strati-
fied media. Therefore this formalism can then be used for a wide range of printed transmission
lines having different number of conductors and dielectric stratifications such as a microstrip,
stripline and a coplanar waveguide as in Figure 1.1. The model assumes that the transmission
lines are infinitely long, the conductors infinitesimal in thickness and a homogeneity in the
transverse plane. Making use of the Transmission Line Spectral Green’s functions (TLGF), an
integral equation can be constructed for both strip-type as slot-type structures from where the
currents along the transmission line can be resolved. Analyzing the dominant current contri-
bution, in its spectral form, will allow for a characterization in terms of propagation constant,
characteristic impedance and losses associated to this specific mode. A study of the location of
the propagating modes in the longitudinal spectral plane can give information regarding its na-
ture; e.g. whether it is radiative or whether it is exciting a surface-wave. Accordingly, a suitable
integration path in the transverse spectral plane needs to be chosen.

a) b)

c) d)

Figure 1.1: Examples of printed transmission lines. a) Microstrip, b) Stripline, c) Slotline, d) Coplanar Waveguide
(CPW);
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CHAPTER 1. INTRODUCTION 3

1.3 Outline of the thesis

The outline of this thesis is as follows. The thesis is divided in 3 main chapters. In chapter 2 we
will cover some basic theory needed for characterizing printed transmission lines. The Trans-
mission Line Spectral Green’s function formalism is introduced from where we discuss the
singularities that can be found in these Green’s functions. These singularities are associated to
space-waves, leaky-waves and surfaces-waves which are intrinsic to the stratification. In chap-
ter 3, the quasi-analytical model used for transmission line characterization will be discussed.
First the integral equations are formulated from where the dispersion equation is defined. Solv-
ing the dispersion equation will give us the propagating modes along the transmission lines and
forms the basis of this quasi-analytical model. Next we will show that solving this dispersion is
non-trivial as it depends on the integration path in the spectral domain; whether or not it encloses
or crosses any singularities in the Green’s functions. We will explain, by means of the current
spectrum, how to do this integration in order to make sure that the propagating modes, found
as a solution of the dispersion equation, are actually physically valid. Subsequently we will
explain the procedure for calculating the characteristic impedance of the transmission line. Fi-
nally, the implementation of ohmic losses and superconductive materials in the quasi-analytical
model are discussed. In chapter 4 will validate the proposed quasi-analytical model by sev-
eral examples. In this chapter we will define a surface-wave loss approximation, stating that
dielectric slabs with an electrical height larger than half a wavelength should be modeled as an
infinite dielectric. This approximation will be the result of a comparison between the losses due
to surface-wave excitation and direct radiation into an infinite medium.

Characterization of Printed Transmission Lines at High Frequencies
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Chapter 2

Spectral Green’s functions

In this chapter, the two-dimensional (2D) spectral Green’s functions are introduced. These
Green’s functions form a dyadic to calculate the electric or magnetic field due to an elementary
source. The Green’s functions follow from a transversalization of Maxwell’s Equations. The
total fields in layered media of printed transmission lines are decoupled in transverse electric-
(T E−) and transverse magnetic- (T M−) waves. These waves are expressed in terms of voltages
and currents in an equivalent transmission line representation of the stratification. Within the
spectral Green’s functions, singularities can be observed in the complex plane. The singularities
of the Green’s functions can represent space-waves, surface-waves and leaky-waves which are
supported by the structure. Finally we will show that the field distributions in a structure with
stratified media, excited by an elementary source, are mostly defined by the singularities found
in the 2D transmission line Green’s functions representing the stratified media.

2.1 Electric field due to an elementary source

Electromagnetic wave problems are conventionally solved by solving the Maxwell equations
Eq. (2.1):

∇×e = −µ
∂h
∂t
−m0 (2.1)

∇×h = ε
∂e
∂t

+j0 (2.2)

∇ ·e =
ρ
ε

(2.3)

∇ ·h = 0 (2.4)

Solving the Maxwell equations essentially means that, given the known sources m0 and j0,
the electric and magnetic fields are calculated for every point in space. However, solving the
Maxwell equations can be non-trivial, especially for media with arbitrary stratifications. This
problem can be avoided by using Green’s functions. A Green’s function g̃(r,r′) forms the
solution to the Maxwell equations; it is the electric (e) or magnetic (h) field, denoted by f ,
in r radiated by an elementary equivalent current source δ(r− r′)p̂ located in r′. Therefore,
Green’s functions can be used as a dyadic to solve the Maxwell equations for arbitrary current
sources by means of a convolution integral between the Green’s function and the impressed
currents:

f(r,r′) =
∫∫∫

V
g̃(r,r′)∗c(r′)dr′ (2.5)

5



6 2.2. SPECTRAL GREEN’S FUNCTIONS

where f(r,r′) is the electric (e) or magnetic (h) field due to an electric (j0) or magnetic (m0)
current source c(r′). The Green’s functions for an elementary dipole in free-space can be
analytically derived from electric and magnetic vector potentials. For printed transmission lines
we are, of course, not interested in free-space solutions since the strips (or slots) are printed on
dielectrics such as silicon. Expressing the Green’s functions in its spectral form with respect to
its transverse components is required; this will allow for solving more complex problems using
an equivalent transmission line representation.

2.2 Spectral Green’s functions

Translating the Green’s functions to the spectral domain allows us for using an equivalent trans-
mission line representation on the arbitrary stratification of plane-stratified media [17]. Subse-
quently we will show that the singularities in the Transmission Line Spectral Green’s functions
(TLGF) are the dominant points contributing to the fields f(r,r′). The Fourier transform of the
spatial Green’s functions g̃(r,r′) is defined as Eq. (2.6).

g̃(r,r′) F→ G̃(kx,ky,z,z′) =
∫ ∞

−∞

∫ ∞

−∞
g̃(r,r′)e jkxxe jkyydxdy (2.6)

After representing the Green’s function and current sources in the spectral domain, the convolu-
tion from Eq. (2.5) can then be expressed as a multiplication in the spectral domain. The fields
f(r,r′) can then be expressed as an inverse Fourier transform of this spectral multiplication as
is shown in Eq. (2.7).

f(r,r′) =
(

1
2π

)2∫ ∞

−∞

∫ ∞

−∞
G̃(kx,ky,z,z′) ·C(kx,ky)e− jkxxe− jkyydkxdky (2.7)

where

c(r′) F→C(kx,ky) (2.8)

Having the Green’s functions in its spectral form, analytic solutions can be derived for plane-
stratified media problems as such we will be dealing with printed transmission lines.

2.2.1 Spectral transmission line representation of stratified media

When printed transmission lines are assumed to be homogeneous in the (x̂, ŷ)-plane, the trans-
mission line can be modeled as plane stratified media. It is well known how to construct the
spectral Green’s functions of such plane stratified media [17]. In the software-tool, four possi-
ble stratifications are considered:

1. An infinite top medium
2. A finite upper slab
3. A finite lower slab
4. An infinite bottom medium

With this choice of stratification, most commonly used printed transmission lines can be mod-
eled. Visualizing these stratifications congruent to the equivalent transmission line represen-
tation gives us Figure 2.1. Both top and bottom media are infinite, the equivalent transmis-
sion lines of these media can therefore be characterized as loads, ZL−top and ZL−bottom, con-
nected to the finite transmission lines representing the upper and lower slabs with characteristic

Characterization of Printed Transmission Lines at High Frequencies
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z=0

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

ZL-bottom

Z0-upper

Z0-lower

a) b)

ZL-bottom

z=hupper

z=-hlower

Zin-up

Zin-down

Z0-upper

Z0-lower

z=0

z=0

ZL-top

Figure 2.1: General equivalent transmission line models for a) strip-type transmission lines and b) slot-type trans-
mission lines.

impedances Z0−upper and Z0−lower. The transmission-line model is entirely decoupled in T M-
and T E-modes, where the loads, ZL, and characteristic impedances Z0 can be characterized by
(2.9).

ZT M = ζ
k
kz

(2.9)a

ZT E = ζ
kz

k
(2.9)b

where ζ is the wave-impedance ζ0/
√

εr. The current- and voltage- sources in Figure 2.1 are
normalized to 1 A and 1 V respectively. Therefore, by using the input impedances for the upper
(Zin−up) and lower (Zin−down) half of the structure, the TLGF can be expressed in terms of the
voltage vT M/T E or the current iT M/T E at z = 0 for an electric- or magnetic source at z′ = 0
respectively according to (2.10) [18].

G̃EJ
xx (kx,ky) =−

vJ
T Mk2

x + vJ
T Ek2

y

k2
ρ

(2.10)a

G̃HM
xx (kx,ky) =−

iMT Ek2
x + iMT Mk2

y

k2
ρ

(2.10)b

where k2
ρ = k2

x + k2
y . As will be shown at the construction of the integral equations in chapter 3,

only the xx-component of the dyadic Green’s functions are necessary for the characterization
of printed transmission lines. For a magnetic source, in Figure 2.1b, the upper and lower half-
space are entirely separated by a ground-plane, leading to a summation of two independent
Green’s functions as in Eq. (2.11).

G̃HM−tot
xx (kx,ky) = G̃HM−up

xx (kx,ky)+ G̃HM−down
xx (kx,ky) (2.11)

Characterization of Printed Transmission Lines at High Frequencies
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The used formalism for the Green’s function will allow for easy implementation and analysis of
some interesting characteristics of printed transmission lines; such as radiation into space- and
surface-waves, dielectric losses, conductor losses in any ground planes and superconductivity.
This will be discussed later on. A more extensive explanation and derivation of the spectral
Green’s functions which are used for the printed transmission lines in the software-tool can be
found in Appendix C.

2.2.2 Singularities

In the previous subsection we arrived at an expression of the electric- or magnetic fields due to
an elementary current source formulated in terms of anti-Fourier transforms (2.7). The Fourier
transform of the current source, C(kx,ky), does not contain any singularities. Therefore, the
field distribution is dominated by the contributions due to the singularities in the Green’s func-
tions (2.10). These singularities can be poles, associated to intrinsic leaky- or surface-waves
modes or branch-points and -cuts associated to any infinite media. We will investigate the sin-
gularities in the Green’s function due to an electric source oriented along x̂, i.e. the singularities
in G̃EJ

xx (kx,ky) in Eq. (2.10)a. The procedure will be similar for the Green’s functions due to a
magnetic source and will not be performed here.

Performing a change to a polar coordinate system, without showing the algebraic steps, for
the integral Eq. (2.7) and the Green’s functions Eq. (2.10) we obtain Eq. (2.12) and Eq. (2.13)
[19]. In this change of coordinate system we used kx = kρ cos(α) and ky = kρ sin(α).

f =

(
1

2π

)2∫ 2π

0

∫ ∞

−∞
G̃(kρ,α,z,z′) ·C(kρ,α)e− jkρ·ρkρdkρdα (2.12)

G̃EJ
xx (kρ,α) = −vJ

T M(kρ)cos2(α)−V J
T E(kρ)sin2(α) (2.13)a

G̃HM
xx (kρ,α) = −iMT E(kρ)cos2(α)−V M

T M(kρ)sin2(α) (2.13)b

It can be demonstrated that f does not depend on α since the integral in α (2.12) can be closed
assuming a far observation distance and a asymptotic evaluation of the slow-varying contribu-
tions of the integrand [19]. As is explained, the current source in Figure 2.1a is normalized to 1
A. Therefore, vT M/T E at z = 0 can be expressed in terms of the input impedances for the upper
(Zin−up) and lower (Zin−down) half of the structure as is described in Eq. (2.14).

vT M/T E =
Zin−upZin−down

Zin−up +Zin−down
(2.14)

From Eq. (2.14) it is clear that both the T M- and T E-waves supported by the structure can be
found by solving Eq. (2.15)

Zin−up +Zin−down = 0 (2.15)

Solving the equality in Eq. (2.15), results in a location of the singularity kρ in the spectrum.
Evaluating the integral (2.12) in kρ by calculating the residues as is described in Appendix A
of [19], the electric field contributions due to a T M-wave were calculated as being (2.16) while
the electric field contribution due to a T E-wave can be expressed as (2.17).

Characterization of Printed Transmission Lines at High Frequencies
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Eρ(ρ,z) ≈ Res[vT M(kρ,z,z′)]Cx(kρ,φ)
C cos(φ)e− jkρρ

√ρ
(2.16)a

Ez(ρ,z) ≈ −ζkρ

k
Res[iT M(kρ,z,z′)]Cx(kρ,φ)

C cos(φ)e− jkρρ
√ρ

(2.16)b

Eφ(ρ,z)≈−Res[vT E(kρ,z,z′)]Cx(kρ,φ)
C sin(φ)e− jkρρ

√ρ
(2.17)

where, Cx(kρ,φ) is assumed to be a PWS current distribution (2.18). In (2.18), l and ws are the
length and width of the PWS current respectively and keq is the effective propagation constant
of the current.

Cx(kρ,φ) =
2keq

(
cos
(

kxl
2

)
− cos

(
keql

2

))

(k2
eq− k2

x)sin
(

keql
2

) sinc
(

kyws

2

)
(2.18)

C is resulting from an asymptotic behavior evaluation for large observation distances (2.19)

C = j

√
kρ

2π
e j π

4 (2.19)

Similar steps can be done for a magnetic current source. The electric field components can then
be summarized in an informative figure as in Figure 2.2 and 2.3. We can see the orientation and
field components of the T M- and T E-surface-waves for a magnetic or electric current respec-
tively. T M-surface-wave will only have an electric field in the radial- and z-direction while the
T E-surface-wave will only have an electric field component in the azimuthal direction. Also
the cos(φ) distribution from Eq. (2.16) and Eq. (2.17) can be seen. From the 1/

√ρ-spreading
of the fields it is clear that we are dealing with cylindrical waves.

TE-Waves

TM-Waves

Figure 2.2: TM- and TE- surface-wave propagation di-
rection and field components for a magnetic current (slot-
type transmission line)

TE-Waves

TM-Waves

Figure 2.3: TM- and TE- surface-wave propagation di-
rection and field components for an electric current (strip-
type transmission line)
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10 2.3. SURFACE-AND LEAKY-WAVES

2.3 Surface-and leaky-waves

In this section, the field components resulting from the singularities found from the Green’s
functions will be investigated. In the case that kρ is completely real (for lossless stratification),
the pole represents a surface-wave. When kρ will have an imaginary part, the wave will leak
power into an infinite medium and therefore represents a leaky-wave. In this section we will
explain some basic characteristics regarding surface- and leaky-waves.

Two situations will be studied:

1. A surface-wave pole due to an electric current source in the presence of a grounded di-
electric slab

2. A leaky-wave pole due to an electric current source in a grounded air-gap, but in the
presence of a high dense infinite medium

In both situations, a CST simulation will be performed where the propagation direction and
field components of the wave, as visualized in Figure 2.3, will be verified.

2.3.1 Surface-waves due to an elementary source

In this subsection, we will start with a concise description of the characteristics of a surface-
wave after which the surface-waves in a grounded dielectric slab excited by an elementary
source is investigated. In this investigation, the field components of the first T M-surface-wave
will be verified by evaluating the integral (2.7) by means of the residual contributions from
Eq. (2.16).

Surface-wave characteristics

Any dielectric slab with non-zero thickness and a relative permittivity greater than unity sup-
ports at least one propagating surface-wave mode without a cut-off frequency [20]. Surface-
waves can be described as waves propagating in the transverse direction without attenuation;
the waves are guided inside the stratifications of the structure. Because the surface-waves travel
without attenuation, the transverse propagation constant, kρ,SFW , will be strictly real (2.20).
Note that we are assuming a lossless dielectric slab, in the case of dielectric losses kρ,SFW will
have an imaginary part.

kρ,SFW = βρ,SFW (2.20)

Since the surface-waves are bound and do not leak, we can consider the wave as a couple of
plane waves bouncing within the stratification with an angle, θSFW , greater than the critical
angle, θc = sin−1

(
1√
εr

)
, where εr is the relative permittivity of the dielectric. This is shown in

θ
SFW

θ
c

k
z0,SFW

r

kρ,SFW

k
d

kzd,SFW

Figure 2.4: Surface-wave propagation mechanism in a dielectric slab with an infinite medium of air.
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Figure 2.4. Because θSFW > θc, the angle of transmission, θt will be imaginary; there will be
no transmitted propagating wave. With this information and referring to Snell’s law (2.21),

√
εr sin(θSFW ) = sin(θt)√

εr,SFW = sin(θt)> 1 (2.21)

we can deduct that the propagation constant will be between k0 and kd , where kd = k0
√

εr.
Surface-waves are referred to as slow-waves because kρ,SFW > k0 and therefore vSFW < v0.

In Figure 2.4, electric field lines are drawn outside the dielectric slab. However there is no
propagation in ẑ-direction outgoing from the dielectric slab; the propagation constant kz0,SFW
outside the slab is purely imaginary and verifying the radiation condition Eq. (2.22).

kz0,SFW =
√

k2
0− k2

ρ,SFW =− jαz0,SFW (2.22)

Whether a surface-wave is excited in a printed transmission line and what conditions are related
to this excitation will be discussed in chapter 3. Now we will verify the field distributions
associated to a surface-wave.

Electric current-source in the presence of a grounded dielectric slab

The stratification under investigation is shown in Figure 2.5 with H = 500µm and εr = 11.9.
The structure is excited with an elementary electric source oriented along x̂ with dimensions
∆x = ∆y = λ f /20, where λ f is the free-space wavelength at 85 GHz. The first two surface-
waves appearing in this structure are the T M0-surface-wave with a cutoff frequency of kc = 0
and the T E1-surface-wave with a cutoff frequency of kc =

π
2H . Note that these surface-waves

are singularities in the Green’s functions as is explained in subsection 2.2.2. These two surface-
waves are of interest when applying a frequency sweep of

25 GHz < f < 85 GHz

resulting in an electrical height of the slab of

0.14λd < H < 0.49λd

where λd is the wavelength inside the dielectric. The T M0- and T E1-surface-waves are shown
in Figure 2.6.

H

Δx

Δy

x

y

z

φ

z

ρ

P( )ρ φ, ,z

O

a) b)

Figure 2.5: a) Grounded dielectric slab with H = 500µm, εr = 11.9, ∆x = ∆y = λ f /20, where λ f is the wavelength
at 85 GHz. b) Cartesian and cylindrical reference system.
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Figure 2.6: T M0- and T E1-surface-waves for the structure in Figure 2.5a.

According to Eq. (2.16), the T M0-surface-wave will have an electric field in radial- and z-
direction while the T E1-surface-wave will have an electric field in the azimuthal direction. In
Figure 2.7a we can see the (x,y)-plane of |Etot | =

√
|Eρ|2 + |Ez|2 + |Eφ|2 at 45 GHz inside the

dielectric slab, extracted from a CST simulation. From the distinct cos(φ)/√ρ distribution of
the electric field and referring to Figure 2.3, it is clear that indeed only the T M0-surface-wave
is present in the stratification. Looking at the (x,y)-plane at 45 GHz, we can see an electric field
outside the dielectric slab, in the air. However, as is explained, this is not a propagating wave
in the air as the surface-wave angle is above the critical angle. In Figure 2.6 we see that at 80
GHz both the T M0- as the T E1-surface-wave are above cut-off frequency. This is confirmed
when looking at the (x,z)-plane of |Etot | in Figure 2.7c, where the cos(φ)/√ρ distribution has
disappeared; interference can be seen between both surface-wave as they are propagating with
different phase-velocities (see Figure 2.6).

We will go more in depth in the electric field distribution of a surface-wave in a grounded
slab. The electric field distribution will be analyzed at 45 GHz, allowing to see only the T M0-
surface-wave. The total electric field as a function of height at f = 45 GHz and φ = 0 is shown
in Figure 2.8. ρ is chosen to be a few wavelengths from the source, eliminating any near-field
contributions excited by the elementary current source. We can see that |Ez| has a discontinuity
at the interface between the slab and air (z = 500µm) while |Eρ| is continuous. This behavior
verifies the boundary conditions between two dielectric media (2.23), where a discontinuity of
the normal electric field is proportional to the ratio of the dielectric constants, ε2/ε1 (= 1/εr):

ẑ12× (e2−e1) = 0 (2.23)a
(ε2e2− ε1e1) · ẑ12 = 0 (2.23)b

The fields calculated by CST can be verified by evaluating the integral Eq. (2.7) in terms of the
residual field contributions from the poles found in the Green’s functions (2.16) [19]. In (2.16),
the residues are required to be calculated for vT M and iT M in the surface-wave poles kρ = kT M0 .
For this structure the residues for the fields inside the slab (z < H) are (2.24):

Res[vT M(kρ,z)]|kρ=kT M0
=

Z0Zs

D′(kρ)

sin
(
kzd,SFW z

)

sin
(
kzd,SFW H

) (2.24)a
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a) b)

c)

Air

Silicon

Figure 2.7: 2D-plane view of |Etot | for the structure in Figure 2.5a, extracted from CST MWS; a) (x,y)-plane
inside the dielectric slab at 45 GHz, b) (x,z)-plane at 45 GHz and c) (x,y)-plane inside the dielectric slab at 80
GHz.

Res[iT M(kρ,z)]|kρ=kT M0
=

Z0Zs

D′(kρ)

1
Zd

j cos
(
kzd,SFW z

)

sin
(
kzd,SFW H

) (2.24)b

And the residues for the fields inside the air (z > H) are (2.25):

Res[vT M(kρ,z)]|kρ=kT M0
=

Z0Zs

D′(kρ)
e jkz0,SFW He− jkz0,SFW z (2.25)a

Res[iT M(kρ,z)]|kρ=kT M0
=

Z0Zs

D′(kρ)

1
Z0

e jkz0,SFW He− jkz0,SFW z (2.25)b

In Eq. (2.24) and Eq. (2.25) we have

kz0,SFW = − j
√
−(k2

0− k2
ρ) (2.26)a

kzd,SFW =
√

k2
d− k2

ρ (2.26)b

Z0 = ζ0
kz0,SFW

k0
(2.26)c

Zd = ζ0
kzd,SFW

kd
(2.26)d

Zs = jZd tan
(
kzd,SFW H

)
(2.26)e

D(kρ) = Z0(kρ)+Zs(kρ) (2.26)f

Using this approach, the electric fields of the T M0-surface-wave in Figure 2.8 can be verified
and this is shown in Figure 2.9 and Figure 2.10 for the electric field in the dielectric slab and

Characterization of Printed Transmission Lines at High Frequencies



14 2.3. SURFACE-AND LEAKY-WAVES

200 400 600 800
0

100

200

300

400

500
E(z)

z [ m]μ

|
E

|
[V

/
m

]

|E
tot

|

|E
rho

|

|E
z
|

Figure 2.8: Total electric field as a function of height at f = 45 GHz and φ = 0

air respectively. The fields obtained by calculating the residues are normalized to the ampli-
tude of the electric fields from CST. We can see that, indeed, the singularity found from the
Green’s functions (kT M0 in Figure 2.6) is responsible for the total electric field distribution.
Also, the sin

(
kzd,SFW z

)
and cos

(
kzd,SFW z

)
distribution in the dielectric from Eq. (2.24) can be

recognized in the field-distributions of |Eρ| and |Ez| respectively. Finally, the exponential de-
caying, non propagating wave, in the air can be recognized; from the residues in Eq. (2.25) and
Eq. (2.22) we have e− jkz0,SFW z = e−αz0,SFW z.

With this we will conclude our concise description of surface-wave poles found in the Green’s
functions and the characterization of the fields associated to them. In chapter 3 we will inves-
tigate when such surface-wave is excited on a printed transmission line and in chapter 4 some
examples will be given together with a surface-wave loss study.
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Figure 2.9: Total electric field in the dielectric slab
as a function of height at f = 45 GHz and φ = 0
verified with the Residue Theorem
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Figure 2.10: Total electric field in the air as a func-
tion of height at f = 45 GHz and φ= 0 verified with
the Residue Theorem
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Figure 2.11: Leaky-wave propagation mechanism in a) a dielectric slab with an infinite medium of air b) a
grounded air-gap in the presence of an infinite medium.

2.3.2 Leaky-waves due to an elementary source

In this subsection, we will start with a concise description of the characteristics of a leaky-wave
after which the leaky-waves in a grounded air-gap, but in the presence of an infinite dielectric,
excited by an elementary source is investigated. In this investigation, the field components of the
first T M-surface-wave will be verified by evaluating the integral (2.7) by means of Eq. (2.16).

Leaky-wave characteristics

Leaky-waves can be described as waves propagating in the transverse direction, but in con-
trast to surface-waves, they propagate with attenuation; the waves are leaking into the infinite
medium. Because the leaky-waves travel with attenuation, the transverse propagation constant,
kρ,LW , will have an imaginary part (2.27).

kρ,LW = βρ,LW − jαρ,LW (2.27)

In Figure 2.11 we see two structures where a leaky-wave can exist. In a) we see a dielectric slab
with an infinite medium of air while in b) we can see a grounded air-gap in the presence of an
infinite medium. In Figure 2.11a, θLW is now smaller than the critical angle, θc = sin−1

(
1√
εr

)

whereas the structure in Figure 2.11b does not have a critical angle since θc = sin−1(
√

εr) is
completely imaginary. For the leaky-waves with a propagating mechanism as in Figure 2.11,
we know that the angle of transmission θt is now real so that for subfigure a), Snell’s law gives
us:

√
εr sin(θLW ) = sin(θt)√
εr,LW = sin(θt)< 1 (2.28)

Characterization of Printed Transmission Lines at High Frequencies



16 2.3. SURFACE-AND LEAKY-WAVES

And for subfigure b), we know θLW is real so that Snell’s law gives us:

sin(θLW ) =
√

εr sin(θt)√
εr,LW < 1 (2.29)

The effective dielectric constant of the leaky-wave, εr,LW , will therefore be smaller than 1 (2.28).
So in contrary to surface-waves, leaky-waves are referred to as fast-waves since kρ,LW < k0
(2.30) and therefore vLW > v0.

kρ,LW = k0
√

εr,SFW < k0 (2.30)

In Figure 2.11, the electric field lines are drawn outside the dielectric slab. In contrary to the
surface-wave situation θt will be real; there will be propagation outside the dielectric slab with
a propagation constant of Eq. (2.31).

kz,LW =
√

k2
0− k2

ρ,LW = βz,LW + jαz,LW (2.31)

The imaginary part of the wavenumber is positive; the fields are growing with z. The prop-
agation constant is therefore not verifying the radiation condition. However, the pole is still
physically valid because Im[kρ,LW ] < 0. The exponential attenuation in ρ, e−αρ,LW ρ, is in fact
larger than the growing in z, e+αz,LW z.

Apart from the leaky-waves in Figure 2.11b with kρ,LW < k0, another leaky-wave pole can
be identified in the Green’s function with kρ,LW > k0. An example of such pole can be seen
in Figure 2.13 which will be further investigated in the following subsection. This leaky-wave
mode is not bouncing within the stratification (since kρ,LW > k0), but propagating along the
interface and directly radiating into the infinite dielectric.

Electric current-source in a grounded air-gap but the presence of a dielectric slab

The stratification under investigation is shown in Figure 2.12 with H = 500µm and εr = 11.9 for
the infinite dielectric. The structure is excited with an elementary electric source with dimen-
sions ∆x = ∆y = λ f /20, where λ f is the free-space wavelength at 85 GHz. The first leaky-wave
appearing in this structure is a T M-leaky-wave. This leaky-wave is the only one of interest
when applying a frequency sweep of

x

y

z

φ

z

ρ

P( )ρ φ, ,z

O

Δx

Δy

H

a) b)

Figure 2.12: a) Grounded air-gap with H = 500µm below an infinite dielectric, εr = 11.9, ∆x = ∆y = λ f /20, where
λ f is the wavelength at 85 GHz. b) Cartesian and cylindrical reference system.
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Figure 2.13: T M0- surface-wave for the structure in Figure 2.12

25 GHz < f < 85 GHz

resulting in an electrical height of the air-gap of

0.042λ0 < H < 0.14λ0

where λ0 is the wavelength inside the air-gap. The T M-leaky-wave for this frequency sweep is
shown in Figure 2.13.

Equivalent to the T M0-surface-wave in the previous subsection, the T M-leaky-wave will have
an electric field in radial- and z-direction. In Figure 2.14a we can see the (x,y)-plane of |Etot |=√
|Eρ|2 + |Ez|2 + |Eφ|2 at 45 GHz inside the dielectric slab, extracted from a CST simulation.

Once again, the distinct cos(φ)/√ρ distribution of the electric field can be seen, verifying that
indeed only the T M-leaky-wave is present in the stratification. Looking at the (x,z)-plane at 45
GHz, we can now see clearly a propagating wave outside the air-gap, into the infinite medium;
the leaky-wave is indeed leaking.

We will go more in depth in the electric field distribution of this leaky-wave and try to verify
it analytically. The total electric field as a function of height at f = 45 GHz and φ = 0 is shown

a) b)

Silicon

Air

Figure 2.14: 2D-plane view of |Etot |, extracted from CST MWS at 45 GHz for the structure in Figure 2.12a, a)
inside the dielectric slab (x,y)-plane and b) in the air and infinite dielectric (y,z)-plane.
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Figure 2.15: Total electric field as a function of height at f = 45 GHz and φ = 0

in Figure 2.15. ρ is chosen to be a few wavelengths from the source, eliminating any near-field
contributions excited by the elementary current source.

The fields calculated by CST can be verified using the exact same approach as was done with
evaluating a surface-wave in a grounded dielectric slab. For this structure the residues for the
fields inside the air-gap (z < H) are (2.32):

Res[vT M(kρ,z)]|kρ=kρ,LW =
ZdZgap

D′(kρ)

sin(kz0,LW z)
sin(kz0,LW H)

(2.32)a

Res[iT M(kρ,z)]|kρ=kρ,LW =
ZdZgap

D′(kρ)

1
Z0

j cos(kz0,LW z)
sin(kz0,LW H)

(2.32)b

And the residues for the fields inside the infinite medium (z > H) are (2.33):

Res[vT M(kρ,z)]|kρ=kLW =
ZdZgap

D′(kρ)
e jkzd,LW He− jkzd,LW z (2.33)a

Res[iT M(kρ,z)]|kρ=kLW =
ZdZgap

D′(kρ)

1
Zd

e jkzd,LW He− jkzd,LW z (2.33)b

In Eq. (2.32) and Eq. (2.33) we have Eq. (2.34):

kz0,LW =
√

k2
0− k2

ρ (2.34)a

kzd,LW = +
√
−(k2

d− k2
ρ) (2.34)b

Z0 = ζ0
kz0,LW

k0
(2.34)c

Zd = ζ0
kzd,LW

kd
(2.34)d

Zgap = jZ0 tan(kz0H) (2.34)e
D(kρ) = Zs(kρ)+Zgap(kρ) (2.34)f

As before, the electric fields of the T M-leaky-wave in Figure 2.15 can be verified using these
residues. This verification is shown in Figure 2.16 and Figure 2.17 for the electric field in the
air-gap and infinite medium respectively. The fields obtained by calculating the residues are
normalized to the amplitude of the electric fields from CST. Like we have seen in the case in
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the surface-wave, the pole found from the Green’s functions (Figure 2.13) is responsible for the
total electric field distribution.

With this, we will conclude our concise description of surface-wave poles and leaky-poles
found in the Green’s functions and the characterization of the fields associated to them. The
relation between these propagating modes and the excitation of them when a strip or slot is in
the presence in such stratification will be discussed in chapter 3 and chapter 4.
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Figure 2.16: Total electric field in the air-gap as a
function of height at f = 45 GHz and φ = 0 verified
with the Residue Theorem
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Figure 2.17: Total electric field in the dielectric
medium as a function of height at f = 45 GHz and
φ = 0 verified with the Residue Theorem
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Chapter 3

Quasi-analytical model for transmission
line characterization

In this chapter, the quasi-analytical model is discussed which allows for a fast characterization
of a wide variety of printed transmission lines in terms of propagation constant, characteristic
impedance, effective dielectric constant and losses. These losses are composed out of conductor
losses, dielectric losses and radiation losses into space- and surface-waves. For printed trans-
mission lines these latter losses are of particular importance when the transverse dimensions of
the transmission lines become significant in terms of wavelength. Transmission lines fabricated
using current printed circuit board technologies are limited in its dimensions. Typical critical
transverse dimensions are 100 µm in width and 127 µm in substrate height. When the transverse
dimensions become significant in terms of wavelength (∼ λ/20 in line width and ∼ λ/4 in sub-
strate height), dynamic phenomena in the line become non-negligible and can have a significant
influence on the main parameters of the transmission line. This quasi-analytical model allows
for studying the effect of these dynamic phenomena on the main parameters of the transmission
line.

The quasi-analytical model makes use of the transmission line formalism [15]- [16]. The
Green’s functions in this formalism are formulated according to the equivalent transmission line
model as is explained in chapter 2. These Green’s functions represent the solution to the integral
equation of a magnetic or electric line current in the presence of stratified media. Therefore this
representation can then be used for a wide range of printed transmission lines having different
number of conductors and dielectric stratifications (e.g. a CPW in Figure 3.1). The transmission
lines are assumed to be infinitely long along x̂, the conductors infinitesimal in thickness and a
homogeneity in the transverse (x̂, ŷ)-plane.

In Section 3.1 we will start with a concise description of the construction of the integral
equations (IE) used. Both the Electric Field Integral Equation (EFIE) and Continuity of Mag-

d

H

w
s

y

x

z

ε
r

Figure 3.1: Example of a transmission line (Coplanar Waveguide) with its reference axis. ws is the width of the
slot (or strip for strip-type structure), d is the spacing between multiple lines, H and εr are respectively the height
and the relative permittivity of the dielectric slab.
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22 3.1. CONSTRUCTION OF THE INTEGRAL EQUATIONS (IE)

netic Field Integral Equation (CMFIE) will be combined into one expression. After rewriting
the IE to the spectral domain and equating the integrands we will arrive at the transmission
line formalism. This formalism is an expression for the longitudinal current running along the
transmission line in the form of an inverse-Fourier transform. In Section 3.2 the singularities
of the integrand of this inverse-Fourier transform, which is called the current spectrum, will be
analyzed. Within this analysis a discussion regarding the physical meaning of the singularities
will be conducted by relating the location of the singularities in the longitudinal spectral plane
to the integration path in the transverse spectral plane. Subsequently, in Section 3.4, the model
for obtaining the characteristic impedance of a specific propagating mode will be explained and
related to the input impedance seen from the excitation port (in the model a ∆-gap excitation).
Finally, in Section 3.5 and Section 3.6, the implementation of ohmic-, both conductor- and
dielectric-, losses and superconductivity will be discussed respectively. Examples, validation
and discussion of the model will be shown in chapter 4.

3.1 Construction of the Integral Equations (IE)

In this section the Integral Equations (IE) will be constructed. The IE will be imposed over the
area of strip and slot where the fields over the width of these strips and slots will be averaged.
After making an assumption regarding the transverse current distribution, the unknown in this
system of equations will be the equivalent longitudinal current along the transmission line. This
longitudinal current can be expressed in terms of an inverse-Fourier transform. Finding the
singularities in the integrand of this inverse-Fourier transform, i.e. the current spectrum, forms
the basis of characterizing the main propagating modes in the transmission line. For a more
rigorous derivation of the IE, please refer to Appendix A. For the sake of simplicity, we will
start with the derivation of the IE without taking into account any conductor losses; this will be
done in Section 3.5 and more rigorously in Appendix B.

Two types of integral equations can be constructed; the Electric Field Integral Equation
(EFIE) for strips in [15,21] and [22] or Continuity of Magnetic Field Integral Equation (CMFIE)
in [16]. The EFIE can be expressed as Eq. (3.1),

escatt(x,y) =−m∆(x,y)+etot(x,y) (3.1)

In Eq. (3.1), escatt and m∆ are the tangential components of the scattered electric field and
incident field respectively. The tangential total electric field etot will only be non-zero when
dealing with non-perfect conductors which will be discussed later on and can also be found
in Appendix B. We will continue assuming we are dealing with Perfect Electric Conductors
(PEC). For slot-type transmission lines, the CMFIE enforces the continuity of the magnetic
field as in Eq. (3.2),

j∆ = ẑ× (hz>0−hz<0) (3.2)

In Eq. (3.2), j∆ is the excitation current and hz>/<0 is the magnetic field above and below the
transmission line. The incident field for the EFIE (m∆(x,y)) and the excitation for the CMFIE
(j∆(x,y)) are modeled as a ∆-gap excitation (s∆(x,y)) in the middle of the lines as is shown in
Figure 3.2. For n coplanar lines, the excitation can be described as an excitation vector with
elements as described in (3.3) for i = 0 : n−1. In (3.3), dy = d +ws is the spacing between the
centers of the coplanar lines.

s∆,i(x,y) = s0,i · rect
(

x
∆

)
rect
(

y− idy

ws

)
(3.3)
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Δ
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Δ

a) Strip-type -GapΔ b) Slot-type -GapΔ

ws

jΔ

mΔ

Figure 3.2: ∆-Gap excitation s∆(x,y), a) for strip-type transmission lines: m∆(x,y) and b) slot-type transmission
lines: j∆(x,y).

In (3.3), s0,i are the excitation coefficients to select any propagation modes. For example,
in the developed software tool a maximum of two coplanar lines are possible. This leads to
two possible propagating modes, common- and differential mode, having excitation coefficient
vectors as in (3.4). The excitation vectors (3.3) for these modes in a coplanar waveguide (CPW)
are visualized in Figure 3.3.

scommon
0 =

[
1
1

]
sdifferential

0 =

[
1
−1

]
(3.4)

Combining the EFIE and CMFIE by following the steps in Appendix A will result in a spatial
representation of the IE as in Eq. (3.5):

1
ws

∫

ws

∫∫

S
g̃xx(x− x′,y− y′)ceq(x

′,y′)dx′dy′dy =
1

ws

∫

ws

s∆(x,y)dy (3.5)

where it can be seen that the integral equations are averaged over the width of the strip or slot.
Also, the IE (3.5) is now in its scalar form where only the xx-component of the Green’s function
is required. In the formulation ceq(x,y) are the equivalent magnetic or electric currents along the
transmission line, which is the unknown in this system of equations. The current distribution
along the line is assumed to be separable in space-dependency (3.6).

ceq(x,y) = c(x) · ct(y) (3.6)

In the case that the width of the line ws� λ, the transverse dependence, ct(y) can be charac-
terized by the quasi-static edge singularities (3.7).

ct(y) =
2

wsπ
1√

1− ( 2y
ws
)2

(3.7)

b) Common excitation mode

jΔ,1 jΔ,2

a) Differential excitation mode

jΔ,1 jΔ,2

Figure 3.3: CPW excited by the ∆-Gap excitation vector in a) differential mode (3.4)a, b) in common mode (3.4)b.
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After representing the pertinent integral equations (3.5) in the spectral domain and equating
the integrands of the inverse Fourier transforms, the longitudinal electric or magnetic currents,
c(x), along the transmission line can be expressed as an inverse Fourier transform in the longi-
tudinal domain of the lines (3.8):

c(x) =
1

2π

∫ ∞

−∞
D−1(kx) ·N0(kx)e− jkxxdkx (3.8)

This expression includes multiple conductors. For the EFIE (CMFIE) the denominator D(kx)
represents the average transverse electric (magnetic) field radiated by the equivalent currents on
the strip (slot). It can, in turn, be expressed as a transverse spectral integration as in Eq. (3.9),

Dn,i(kx) =
1

2π

∫ ∞

−∞
G̃xx(kx,ky)Ct(ky)sinc

(
kyws

2

)
e− jky(n−i)dydky (3.9)

with

g̃xx(x,y)
F→ G̃xx(kx,ky) (3.10)

ct(y) =−
2

wsπ
1√

1−
(

2y
ws

)2

F→ Ct(ky) =−J0

(
kyws

2

)
(3.11)

n0,n(x) = s0,n · rect
(

x
∆

)
F→ N0,n(kx) = s0,n · sinc

(
kx∆
2

)
(3.12)

In Eq. (3.9), G̃xx(kx,ky) is the spectral Green’s function of the corresponding planar strat-
ification in absence of the strip (slot) and N0(kx) is the Fourier transform of the longitudinal
excitation law n0(x) = s0rect( x

∆) from (3.3). The assumed edge singular distribution, ct(y) has
an analytic Fourier Transform: J0(

kyws
2 ). The averaging over the width of the strips (slots), leads

to a sinc-function multiplication; sinc(kyws
2 ). The exponential term in the denominator accounts

for the coupling between multiple lines. As an example, for a CPW, D(kx) will in that case be a
2×2-matrix where D1,2(kx) and D2,1(kx) describes the coupling between the lines.

The total current along the transmission line can be calculated by evaluating the inverse
Fourier transform in Eq. (3.8) while the current contribution due to a specific propagation mode
can be calculated by means of evaluating the residue in the singularity associated to this prop-
agation mode. This procedure is explained in Section D.1. However, for the characterization
of printed transmission lines we are not specifically interested in the distribution of the current
running on the strip or slot, c(x). Instead, we are interested in the characteristics of the current
associated to the main propagating mode. Characteristics such as the complex wavenumber and
characteristic impedance can all be extracted from the singularities in the integrand of Eq. (3.8)
and thus the spectral form of the longitudinal current c(x), which we will call the current spec-
trum (3.13).

C(kx) = D−1(kx) ·N0(kx) (3.13)

In the following section we will investigate the singularities in the current spectrum. We will
show that care have to be taken in choosing the integration path in the transverse domain in (3.9)
in order to acknowledge the found singularities as propagating modes to be actually physically
valid.
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3.2 Current spectrum

In the previous section the IE was constructed for both strip-type and slot-type printed trans-
mission lines. Subsequently, it turned out that the longitudinal current along the line could be
expressed as an inverse-Fourier transform of its current spectrum C(kx).

C(kx) = D−1(kx) ·N0(kx)

Referring to the discussion regarding the singularities in Eq. (2.7) (subsection 2.2.2), we al-
ready know that the dominant contributions to c(x) will be originating from the singularities in
the integrand, i.e. the current spectrum C(kx). Since N0,n(kx) (3.12) does not contain any singu-
larities, the inverse Fourier transform of Eq. (3.8), depends mostly on the polar singularities in
D−1(kx). In this section we will start by explaining the procedure for obtaining these singulari-
ties. Secondly, we will see that the location of the singularities in the longitudinal kx domain is
non-trivial as it depends on the transverse integration path in ky (3.9). The impact of the inte-
gration path on the excitation of a microstrip is extensively studied by Mesa in [12, 15, 21, 23].

3.2.1 Dispersion equation

The inverse matrix D−1(kx) can be represented as

D−1(kx) =
A(kx)

|D(kx)|
(3.14)

where

A(kx) is the adjugate of D(kx) (3.15)a
|D(kx)| is the determinant of D(kx) (3.15)b

When this decomposition (3.14) is substituted in, (3.8) we obtain:

c(x) =
1

2π

∫ ∞

−∞

A(kx)

|D(kx)|
·N0(kx)e− jkxxdkx (3.16)

Finding the singularities, and thus the propagating modes, in a printed transmission line can be
done by annulling the determinant of D(kx) Eq. (3.17)

|D(kx)|= 0 (3.17)

Eq. (3.17) is called the dispersion equation. However, solving the dispersion equation for copla-
nar lines will result in two possible solutions; differential and common propagating modes as
is shown for a coupled microstrip in Figure 3.4. By means of the excitation coefficients in
Eq. (3.4), one of the solutions of the dispersion equation, either associated to the differential
or common mode excitation, will be canceled in the current spectrum (3.13). So rather than
annulling the determinant of the denominator |D(kx)| = 0, we will find the singularities in the
current spectrum (3.18):

C−1(kx) = 0 (3.18)
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Magnetic
Wall

Electric
Wall

a) Common mode excitation

b) Differential mode excitation

Figure 3.4: Electric field distribution for a) common mode excitation and b) differential mode excitation for a
coupled microstrip.

The developed MATLAB-tool solves this dispersion equation by using a Taylor series expan-
sion around an initial guess point, kinit , for the complex wavenumber of the main propagating
mode. A sensible initial guess point can be the average propagation constant of two adjacent
stratifications Eq. (3.19).

kinit =

√
k2

up + k2
down

2
(3.19)

Performing a Taylor series expansion of (3.18) around the initial guess point of the complex
wavenumber of the main propagating mode (3.19) results in the dispersion equation as is shown
in Eq. (3.20).

C−1(kinit)+ [C−1(kinit)]
′(kmode− kinit)≈ 0 (3.20)

Solving for kmode results in the following approximation (3.21).

kmode ≈ kinit− kcorrection (3.21)

kcorrection = C−1(kinit)([C
−1(kinit)]

′)−1 (3.22)

The obtained approximation for kmode can thereafter be used as a new kinit for another iteration
towards the true value of kmode. The implementation of this convergence method is explained in
Appendix E and is ensuring that, even with an inaccurate guess-point kinit , the obtained complex
wavenumber is accurately approximated.

The location of the investigated spectral point in the complex spectral plane kx, determines
the mathematically correct integration path in the transverse domain (ky). Care has to be taken
in guaranteeing that the radiation condition is being satisfied. The procedure for finding the
correct integration path can be explained by both studying the longitudinal spectral plane (kx)
and the transverse spectral plane (ky) which will be done in the following subsections.
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3.2.2 Longitudinal spectral plane

First we will investigate the singularities in the current spectrum (3.13); i.e. the longitudinal
spectral plane. Apart from the poles associated to the propagating modes along the printed
transmission line, the spectral plane will contain singularities in the form of branch-points and
its associated branch-cuts. These branch-points and -cuts will for example appear when an
infinite stratification is present. Crossing these branch-cuts leads to different Riemann sheets.
Changing the integration path into the different Riemann sheets allows for finding not only
bounded modes but also improper leaky modes. When the transmission lines are printed in
between two infinite dielectrics, as in the case of circuits placed at the bottom of a dielectric
lens, the main propagating mode could become leaky.

In order to comprehend the important regions in the spectral plane of printed transmission
lines, three possible spectral planes are visualized in Figure 3.5, Figure 3.6 and Figure 3.7. In
Figure 3.5 the spectral plane of a CPW printed in between two infinite dielectrics is depicted.
In Figure 3.6 the plane of a CPW printed on a finite, but large, substrate is shown. Finally, in
Figure 3.7, the spectral plane of a CPW printed in between two infinite dielectrics is shown,
however, in contrast to Figure 3.5 there is an air-gap between the high dense infinite dielectric
and the CPW. In all spectra, the integration path Cx, from −∞ to ∞, allows for calculating the
total current along the transmission line by means of evaluating the inverse Fourier transform
in Eq. (3.8) along Cx. Note that this integration path encloses all the propagating modes and
possible space-wave. It will therefore differ from the current calculated by the Residue Theorem
(D.14) which is only associated to the current contribution due to the investigated spectral point.

We will start by discussing the nature of all the observed singularities in the shown current
spectra. Also, different regions associated to different characteristic propagating modes can be
observed. After discussing these different regions we will investigate the associated transverse
integration paths where we take a leaky-mode of a slotline printed in between two infinite
media as an example. For this structure an analytical solution exist for D(kx) [16]. Finally,
this reasoning will be extrapolated for all other possible transverse integration paths.

Branch-points and its associated branch-cuts

Two branch points which can appear in the longitudinal domain are located at kx = ±ki for
i = 1,2 [17]. k1 and k2 are introduced by the spectral domain Green’s functions and are a
consequence of the infinite top and bottom media. Starting at these branch points, branch cuts
have to be defined allowing to enter the different Riemann-sheets. Two square-root type of
branch cuts arise from kz,i =

√
k2

i − k2
ρ. This square-root will have two solutions as is defined

in Eq. (3.23).

kz,i =
√

k2
i − k2

ρ =





kz,i =− j
√
−(k2

i − k2
ρ) Top Riemann-sheet

kz,i =+ j
√
−(k2

i − k2
ρ) Bottom Riemann-sheet

(3.23)

The first solution, kz,i = − j
√
−(k2

i − k2
ρ), will be located in the top Riemann-sheet and is ver-

ifying the radiation condition. Propagating modes found on this sheet are generally related to
bounded, i.e. non-attenuative, modes. The second solution, kz,i = + j

√
−(k2

i − k2
ρ), will be lo-

cated on the bottom Riemann-sheet. The modes found on this sheet are complex improper; they
do not verify the radiation condition. That they do not verify the radiation condition does not
automatically mean that the modes are not physically valid. The CPW in Figure 3.5 will radiate
in the denser medium with Im(kz,i)> 0. However, since Im[kmode]< 0 and the fact that the lines
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are in practice not infinitely long, the fields will not go to infinity when z→ ∞. Apart from the
discussed square-root type of branch-cut, additional logarithmic-type of branch cuts appear as
is visualized in the spectral planes. These logarithmic-type of branch-cuts are a consequence of

the Hankel-function in the analytical form of D(kx) [16]; H(2)
0 (ws

4

√
k2

i − k2
x).

Another type of branch-point which can appear in the spectrum is depicted in Figure 3.6
and 3.7 by kSFW and kLW respectively. In Figure 3.6, kSFW is associated to a surface-wave in
the dielectric slab. Referring to subsection 2.3.1, we know that a surface-wave travel without
attenuation. It does not leak into the infinite medium and therefore kSFW is located on the
real axis in the spectrum (for lossless dielectrics), and in the top Riemann-sheet with respect
to the infinite medium k1 (3.24). A possible mode exciting such surface-wave will be located
on the bottom Riemann sheet with respect to kSFW . Please note that these Riemann-sheets are
additional to the Riemann-sheets of the infinite medium (3.23). In other words, a propagating
mode exciting a surface-wave mode should be located on the top Riemann-sheet with respect to
k1 but on the bottom Riemann-sheet with respect to kSFW .

kz,SFW =− j
√
−(k2

1− k2
SFW ) (3.24)

In Figure 3.7, kLW is associated to a leaky-wave in the air-gap. Now referring to subsec-
tion 2.3.2, we know that a leaky-wave is radiating into the denser infinite medium and therefore
located on the bottom Riemann-sheet with respect to this medium (3.25). The leaky wave
branch-point kLW will have an imaginary part (2.27) in contrary to the real-valued surface-wave
branch-points . A propagating mode exciting a leaky-wave should be located on the bottom
Riemann-sheet with respect to the infinite medium and on the bottom Riemann-sheet with re-
spect to the leaky-wave pole.

kz,LW =+ j
√
−(k2

2− k2
LW ) (3.25)

The surface-wave condition as is visualized in Figure 3.6 and Figure 3.7 will be discussed in
Section 3.3. For now we can summarize that the first condition for a leaky- or surface-wave to
be excited is when Eq. (3.26) is satisfied.

Re(kmode)< Re(kLW/SFW ) (3.26)

The second condition for a leaky- or surface-wave to be excited is as we discussed in this
section; a propagating mode should be located on the bottom-Riemann-sheet with respect to a
surface-wave-mode or a leaky-wave mode, i.e. below the branch-cuts in the spectra 3.6 and 3.7
associated to kSFW and kLW .

At this point we have discussed all the important singularities found in the longitudinal spectral
plane. We have seen that propagating modes can have different characteristics in terms of
leakage into infinite dielectric or into leaky- and surface-waves. These characteristics determine
whether Im(kz,1) and/or Im(kz,2) should be greater or less than 0. With this in mind, different
regions of the spectra in Figure 3.5-3.7 will be discussed now.

Mathematically correct regions of the spectrum

The spectral plane can now be divided in three different regions, each requiring different integra-
tion paths in order to ensure that the obtained solutions to the dispersion equation are physically
valid. Depending on the fact whether or not the mode will radiate into the infinite medium,
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Figure 3.5: Longitudinal spectral plane (kx) for a CPW printed between two infinite dielectrics.
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Figure 3.6: Longitudinal spectral plane (kx) for a CPW printed onto a finite slab exciting a T M0-surface wave.

Re[k ]x

Im[k ]x

k2k1

-k1-k2

III

Ia

Ia Ib

Cx

kmode

IIIIb

Pole
Branch-point
√-type Branch-cut
Log-type Branch-cut

kLW

Surface-wave condition

IIaIIb

-kLW

-kmode

IIa IIb

Figure 3.7: Longitudinal spectral plane (kx) for a CPW close by a high dense infinite medium.
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Im(kz,1) and/or Im(kz,2) should be greater or less than 0. From Eq. (3.23) we know that both so-
lutions lie on a different Riemann-sheet. The three regions, as visualized in Figures 3.5-3.7, are:

• Region I: Top Riemann-sheet with respect to both infinite media kz,1 and kz,2; Im(kz,1)< 0
and Im(kz,2) < 0). The propagation modes found in this regions will not radiate into the
infinite media. Region I is subdivided into three sub-regions.

– Region Ia: According to our definition of the propagation constant, which is kmode =
β− jα, it is not possible to find any propagating modes in this region. A mode found
in Region Ia will actually grow in magnitude with x increasing which is not possible.

– Region Ib: In this region, the bounded modes will be located. In the case that no
other losses exist, i.e. conductor- and dielectric losses, the propagating mode will be
located on the real axis.

– Region Ic: Any modes found in region Ic are exciting a surface-wave. The surface-
wave condition from Eq. (3.26) is fulfilled and the propagating mode is on the bottom
Riemann-sheet with respect to the surface-wave branch-point. The wavenumber of
the propagating mode must be complex as it is leaking into the surface-wave.

• Region II: Top Riemann-sheet for kz,1 and bottom Riemann-sheet for kz,2; Im(kz,1) < 0
and Im(kz,2)> 0. Radiation occurs into the denser infinite medium. The wavenumbers of
these modes will therefore always have an (negative) imaginary part. This region can be
subdivided into two sub-regions.

– Region IIa: In this sub-region, the transmission line will directly radiate into the
denser infinite medium.

– Region IIb: A leaky-wave mode, such as the example in subsection 2.3.2 is excited.
The surface-wave condition from Eq. (3.26) is fulfilled and the main propagating
mode is located on the bottom Riemann-sheet with respect to the leaky-wave branch-
point.

• Region III: Bottom Riemann-sheets for both kz,1 and kz,2; Im(kz,1)> 0 and Im(kz,2)> 0.
Radiation occurs in both infinite media. Propagating modes located in this region are not
only leaking into the denser dielectric but also in the less dense dielectric (e.g. space-wave
excitation). Just as in region IIb, it is also possible that a leaky-wave modes is excited. For
this reason, region III can also be divided into two sub-regions as is described for Region
II. This is not depicted in Figure 3.7.

We now defined regions with the correct Riemann-sheets with respect to the infinite media
and possible surface- and leaky-wave modes. Propagating modes found in the defined regions
are physically valid. Propagating modes found on any other Riemann-sheets are improper and
not physical. Therefore we have to make sure that, when looking for a solution of the dispersion
equation, we search on the correct Riemann-sheet for the main propagating mode. In the fol-
lowing subsection we will explain the integration paths needed in the transverse domain (3.9)
in order to enter these sheets correctly.

3.2.3 Transverse spectral plane

The three regions and its sub-regions we defined in the longitudinal spectral plane all require a
different integration path in the transverse spectral plane in order to reach the correct Riemann-
sheets. In Figure 3.8 an arbitrary transverse spectral plane is shown where kt,i are the branch-
points of the infinite media according to Eq. (3.27).

kt,i =
√

k2
i − k2

x (3.27)
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Figure 3.8: Generalized transverse spectral plane (ky) with branch-points and -cuts associated to infinite media
and a pole associated to an intrinsic surface-wave.

Equivalently, the location of kt,SFW can be calculated from (3.28):

kt,SFW =
√

k2
SFW − k2

x (3.28)

The branch-cuts running from the branch-points associated to the infinite media are defined to
run along the hyperbolas defined by (3.29). With this definition, the branch-cuts are defined on
the boundary between the top- and bottom Riemann sheets with respect to the infinite media.

Im(k2
z ) = Re(kz)Im(kz) = 0 (3.29)

Crossing these branch-cuts will therefore allow for entering the different Riemann-sheets asso-
ciated to Im(kz) = ±αz. In this section we will discuss the integration path around or through
the branch-points, -cuts and poles in Figure 3.8 in order to find the propagating modes in the
different regions of the longitudinal spectral plane as is discussed in the previous section. We
will start this discussion by investigating the integration path of a slotline printed in between
two infinite media as an analytical solution of D(kx) exists [16].

Slotline printed in between two infinite dielectrics

The denominator D(kx) of a slotline printed in between two infinite dielectrics can be expressed
as Eq. (3.30) [16].

D(kx) =−
1

2π

∫ ∞

∞
G(kx,ky)J0

(
wsky

2

)
dky (3.30)

Comparing (3.30) with our version of the denominator in (3.9), we can see that the fields are not
averaged over the width of the strip and slot (but taken at the centers of the line y = 0) resulting
in an absence of the sinc-function. Also, D(kx) is now a scalar, rather than a N×N-matrix; no
multiple conductors are taken into account resulting in an absence of the exponential in (3.9).
The spectral integration in (3.30) is then performed by using the identity

∫ ∞

−∞

J0(
wsky

2 )√
k2

i − k2
x − k2

y

dky = πJ0

(
ws

4

√
k2

i − k2
x

)
H(2)

0

(
ws

4

√
k2

i − k2
x

)
(3.31)

for i = 1,2. Resulting in the analytical result for D(kx):
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D(kx) =
1

2k0ζ0

2

∑
i=1

(k2
i − k2

x)J0

(
ws

4

√
k2

i − k2
x

)
H(2)

0

(
ws

4

√
k2

i − k2
x

)
(3.32)

for i = 1,2. The summation accounts for the infinite top and bottom media which are separated
in the Green’s functions. Having this said, we will investigate the integration path Cy and the
restrictions on the signs of the square-roots in order to arrive at the analytical solution of D(kx)
(3.33):

D(kx) =
1
π

∫

Cy

J0(
wsky

2 )√
k2− k2

x − k2
y

dky = J0

(
ws

4

√
k2− k2

x

)
H(2)

0

(
ws

4

√
k2− k2

x

)
(3.33)

First, let us assume that |kx|2 < 2k0 and w < λ0/1000. In this case the argument of the Bessel-

function |ws
4

√
k2

i − k2
x |< k02π

k01000 = 0.006 so that J0(
ws
4

√
k2

i − k2
x)≈ 1 and (3.33) results in:

D(kx) =
1
π

∫

Cy

J0(
wsky

2 )√
k2− k2

x − k2
y

dky ≈ H(2)
0

(
ws

4

√
k2− k2

x

)
(3.34)

The integration path Cy in Eq. (3.34) can be decomposed into three distinct contributions as is
shown in Eq. (3.35). The first term integrates between the branch-points ±kt (3.27) while the
second and third contributions closes the integration to −∞ and +∞ respectively.

D(kx) =
1
π

∫ kt

−kt

1√
k2

t − k2
y

dky +
1
π

∫ −kt

−∞

J0(
wsky

2 )√
k2

t − k2
y

dky +
1
π

∫ ∞

kt

J0(
wsky

2 )√
k2

t − k2
y

dky ≈ H(2)
0

(
wskt

4

)

(3.35)
Approximating the Hankel-function as H(2)

0 (wskt
4 ) = J0(

wskt
4 )− jY0(

wskt
4 )≈ 1− jY0(

wskt
4 ) brings

us to the following equalities:

1
π

∫ kt

−kt

1√
k2

t − k2
y

dky = 1 (3.36)a

1
π

∫ −kt

−∞

J0(
wsky

2 )√
k2

t − k2
y

dky +
1
π

∫ ∞

kt

J0(
wsky

2 )√
k2

t − k2
y

dky = − jY0

(
wskt

4

)
(3.36)b

We want to extract the signs of the square-roots in order for these equalities to be true. With this
knowledge we can then deduct on which Riemann-sheet we have to integrate for each integra-
tion contribution in Eq. (3.35). We will start by applying a change of integration parameters:

√
k2

t − k2
y = kt cos(θ)

→k2
t − k2

t cos2(θ) = k2
y

→k2
t (1− cos2(θ)) = k2

y

→k2
t sin2(θ) = k2

y
→kt sin(θ) = ky

and
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dky

dθ
dθ = kt cos(θ)dθ

So that we can see that the equality in (3.36)a is indeed satisfied:

1
π

∫ π/2

−π/2

1
kt cos(θ)

kt cos(θ)dθ = 1 (3.37)

Now the key thing to note here is the restriction on the sign of the square-roots in the change

of parameters;
√

k2
t − k2

y = kt cos(θ) where kt =
√

k2− k2
x . The integration range −π

2 ≤ θ ≤ π
2

is completely real, therefore cos(θ) is strictly real and positive in this integration range. This
change of variables is therefore only valid when the sign of the imaginary part on the right-hand

side Im[kt ] is equal to the sign of the imaginary part on the left-hand side Im[
√

k2
t − k2

y ]. That
is:

Im[kz] = Im[
√

k2− k2
x ] (3.38)

Now, a physical propagating mode along the transmission line verifies Re[kx]> 0 and Im[kx]< 0,
resulting in

√
k2− k2

x =±(a+ jb). Therefore also kz =±(c+ jd). Since Re[kz]> 0 (outgoing
wave) we know that we should integrate in the bottom Riemann-sheet with respect to the infinite
medium, i.e. Im[kz]> 0.

Secondly, we would like to investigate the restrictions on the square-roots on the second
equality, Eq. (3.36)b. Although we did not, yet, find an analytical derivation of this restriction,
numerical evaluations of Y0 and the integrals in Eq. (3.36)b show that in order for this equality
to be true Im[kz]< 0, i.e. we should integrate on the top Riemann-sheet.

So we can summarize that for |ky| < kt we need to integrate on the bottom Riemann-sheet,
while for |ky|> kt we need to integrate on the top Riemann-sheet as is shown in Eq. (3.39).

D(kx) =





1
π
∫ −kt
−∞

J0(
wsky

2 )√
k2

t −k2
y

dky Top Riemann-sheet; Im[kz]< 0

+ 1
π
∫ kt
−kt

1√
k2

t −k2
y

dky Bottom Riemann-sheet; Im[kz]> 0

+ 1
π
∫ ∞

kt

J0(
wsky

2 )√
k2

t −k2
y

dky Top Riemann-sheet; Im[kz]< 0

(3.39)

This study shows how to cross the branch-cuts and on what Riemann-sheet to integrate. In
the next subsection, we will extend this investigation on all other regions we defined in the
complex spectral plane. First we will give an example to show that using the integration path in
Eq. (3.39) gives a valid and physical solution. Also, it will be shown that when the integration
in Eq. (3.36)b is performed on the bottom Riemann-sheet, rather than the top Riemann-sheet,
the dispersion equation can not be solved.
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Figure 3.9: Magnetic current along the slot. Total current, c(x), is calculated via Eq. (3.8). Residual current is the
current contribution of the leaky-wave pole kmode

In order to verify that the integration path in Eq. (3.39) is not only mathematically correct,
but also results in a physical solution of the dispersion equation, we will calculate the magnetic
current running along a slotline at f = 60 GHz, with ws = 180µm (≡ 0.036λ0), εr = 11.7. This
is shown in in Figure 3.9. The total current, c(x), is calculated by performing the inverse Fourier
transform (3.8) with the the integration path Cx from Figure 3.5. The residual current cmode(x)
is the residual current distribution associated to the solution of the dispersion equation. The
residual current can be calculated via Eq. (D.14), which is derived in Section D.1. It can be
seen that the solution to the dispersion is indeed not only mathematically but also physically
valid.

Secondly, in order to show that no (valid) solution exist when the integration in |ky|> kt (first
and third term in Eq. (3.39)) is performed on the bottom Riemann-sheet, we will show the mag-
netic current spectrum. For the mathematically valid integration path according to Eq. (3.39)

Figure 3.10: Magnetic current spectrum of a slotline at f = 60 GHz, with ws = 180µm (≡ 0.036λ0), εr = 11.7; a)
Transverse integration path according to Eq. (3.39), b) Transverse integration path entirely on the bottom Riemann
sheet with respect to the infinite medium k.
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(i.e. |ky|> kt on top Riemann-sheet and |ky|< kt on bottom Riemann-sheet), the magnetic cur-
rent spectrum of this slotline can be seen in Figure 3.10a where the main propagating mode
can be clearly distinguished. The residual current contribution of this observed pole is used
for cmode(x) in Figure 3.9. When also the integration in |ky| > kt is performed on the bottom
Riemann-sheet we obtain the current spectrum in Figure 3.10b. No solution to the dispersion
equation exist. In fact the current spectrum in increasing in magnitude with increasing |kx|.

Transverse integration paths

Now we have shown how two enter the different Riemann-sheets in the transverse spectral do-
main in order to let D(kx) converge and actually results in a valid solution of the dispersion
equation, we can summarize the integration paths required to be taken for the different regions
in the longitudinal spectral plane (see Figure 3.5, Figure 3.6 and Figure 3.7).

When the mode is located in Regions Ib or Ic, it will only verify the radiation condition when
both Im(kz,1) < 0 and Im(kz,2) < 0. This means that with respect to both branch-points k1 and
k2 one must stay on the top Riemann-sheets; see Figure 3.11a and b. Additionally, when a
surface-wave mode is present, and also excited (βmode < βSFW [11]), the surface-wave poles
(−kSFW and kSFW ) have to be enclosed by the integration path (Figure 3.11b).

If the mode is located in Region II, Im(kz,1) < 0 and Im(kz,2) > 0. The bottom Riemann-
sheet with respect to k2 have to be entered by means of the transverse integration path shown in
Figure 3.11c and d. Additionally, when a leaky-wave mode is present, and excited, the leaky-
wave poles (−kLW and kLW ) have to be enclosed by the integration path (Figure 3.11d).

In the case that the mode is located in Region III, there is a mode which is also radiating in
the less dense dielectric (i.e. usually a space-wave), Im(kz,1) < 0 and Im(kz,2) < 0. The trans-
verse integration path enters the bottom Riemann-sheets with respect to both k1 and k2 as is
shown in Figure 3.11e. Again, when a leaky-wave mode is present, and excited, the leaky-wave
poles have to be enclosed by the integration path (Figure 3.11f).

Concluding from this study we can say that when analyzing a solution for kmode from the
dispersion equation, one has to make sure that the location of these solutions in the longitudinal
spectral planes are corresponding with a transverse integration path in (3.9) which makes them
physically and mathematically valid.
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Figure 3.11: Transverse spectral planes (ky) and integration paths for the different regions in Figure 3.5, Figure 3.6
and Figure 3.7.
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The explained integration paths shown in Figure 3.11a-f can be performed in a different,
but equivalent manner. Looking at Figure 3.12a and referring to Cauchy’s Integral Theorem
we know that: C1 +C2 +C3 = 0→ C1 = −C2−C3. As a consequence of this equivalence,
rather than integrating over C1, we can integrate over the real axis on the top Riemann-sheet
(−C3) and subtract the integral between the branch-points (C2). This is shown in Figure 3.12b.
Subsequently, we have to integrate on the bottom Riemann-sheet between the branch-point.
Enclosing either a surface-wave pole or leaky-wave pole as in Figure 3.11b,d,f can be done by
adding the residual contributions of these poles. How this residual contribution is calculated
is explained in Section D.2. So crossing the branch-cut with respect to k2 as in Figure 3.11c,d
is equivalent to integrating over the real axis, subtracting the contribution on the top Riemann-
sheets between the branch-points and adding the contribution on the bottom Riemann-sheet of
k2 as is described in Eq. (3.40) and shown in Figure 3.12b.

∫

II
· · ·dky =

∫ ∞−top

−∞−top
· · ·dky +

∫ −kt,2−top

kt,2−top
· · ·dky +

∫ kt,2−bottom

−kt,2−bottom
· · ·dky (3.40)

Similarly, crossing the branch-cuts with respect to both k1 and k2 as in Figure 3.11e,f is equiva-
lent to the integration as is described in Eq. (3.41) and shown in Figure 3.12c.

∫

III
· · ·dky =

∫ ∞−top

−∞−top
· · ·dky +

∫ −kt,1−top

kt,1−top
· · ·dky +

∫ kt,1−bottom

−kt,1−bottom
· · ·dky

+
∫ −kt,2−top

kt,2−top
· · ·dky +

∫ kt,2−bottom

−kt,2−bottom
· · ·dky

(3.41)
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Figure 3.12: a) Cauchy’s Integral Theorem showing that C1 =−C2−C3; b) Equivalent integration path for Region
II; c) Equivalent integration path for Region III.
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3.3 Leaky- and surface-wave excitation in printed transmission lines

One of the significant advantages of using this quasi-analytical model is that losses due to radi-
ation into space- and surface-waves can easily be investigated. When a stratification becomes
large in terms of wavelength, these dynamic phenomena occur. When a transmission line is
printed onto a dielectric slab, a surface-wave can be excited when the height of this dielectric
slab exceeds an electrical length of approximately λd/4. Transmission lines fabricated with
current printed circuit board technologies are limited in its dimension. Typical critical dimen-
sions are 100 µm in width and 127 µm in height. For this reason, taking into account these
surface-waves are of particular importance for printed transmission lines operating at high fre-
quencies where the minimum dimensions of the transmission line are limited by the technology.
Currently there are no (quasi-) analytical tool for estimating these radiation losses. There are
some equivalent formulas for some basic coplanar transmission lines [11]. However, they do
not account for transmission lines with arbitrary stratifications as in Figure 2.1.

The surface-wave and leaky-wave branch-points in the longitudinal spectral plane are intrin-
sic to the stratification in absence of the strip and slot as is discussed in Section 2.3. However,
whether the dominant propagating mode along the transmission line is actually exciting these
surface- and leaky-wave modes or not, will depend on the location of this dominant propagating
mode with respect to the branch-point of the surface- or leaky-wave. We will refer to this as the
surface-wave condition. This condition will be discussed in this section.

3.3.1 Surface-wave condition

The surface-wave condition is a condition for the main propagating mode along the transmission
line to be exciting a surface-wave (leaky-wave). Radiation into a surface-wave (leaky-wave)
happens with a specific angle of radiation, ψ. The surface-wave condition determines from
what point this angle of radiation is non-imaginary. When ψ becomes real, the main propagating
mode along the transmission line will be exciting the surface-wave (leaky-wave).

The propagation constant along the transmission line will be approximately the average of
the propagation constant of the dielectrics above and below the transmission line; k1 and k2.
This effective propagation constant will therefore be fast, seen from the dense dielectric point
of view. Therefore, the propagating mode will leak into the denser dielectric. In Figure 3.13 we
see the top view of coplanar stripes on top of a dielectric slab. The propagation constant of the
surface-wave mode βSFW is intrinsic to the stratification and does not depend on βmode, or the
presence of the strips. From Figure 3.13 we can see that the angle of radiation ψ is a function

β
SFW

Ψ

β
mode

r

Figure 3.13: (x,y)-view of coplanar stripes on top of a dielectric slab, visualizing the surface-wave condition; ψ
can only be real when βmode < βSFW . βSFW is intrinsic to the stratification (2.20) and ψ is the angle of radiation.
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βρ,SFW

Ψ

βmode

y

x

Figure 3.14: (x,y)-view of the power flow in the dielectric slab of a coplanar waveguide exciting a surface wave.
βmode is the propagation constant, βρ,SFW is the surface-wave mode intrinsic to the stratification (2.20) and ψ is the
angle of radiation into this surface-wave mode.

of the propagation constant of the propagating mode, βmode, and the propagation constant of the
intrinsic surface-wave mode βSFW . The relation between these three components is as (3.42).

cos(ψ) =
βmode

βSFW
(3.42)

It can be seen that there can only be a real angle of radiation ψ when βmode
βSFW

< 1. When this is
not the case, ψ will be imaginary and no leakage into the surface-wave mode occur. From this
equation, the condition for exciting a surface-wave can directly be seen [11]:

βmode < βSFW (3.43)

This is the surface-wave condition as it is visualized in the spectral planes of Figure 3.6 and
Figure 3.7. This condition is also true for exciting any leaky-waves. When this condition is
fulfilled and kmode is also on the correct Riemann-sheet with respect to kLW/SFW , the surface-
or leaky-wave is excited and kLW/SFW should be enclosed by the transverse integration path. A
qualitative example is shown in Figure 3.14. In this figure, the absolute power flow can be seen
in a dielectric slab beneath a coplanar waveguide. The propagating mode βmode is smaller than
βSFW and therefore leaking into a surface-wave mode. An in magnitude decaying power flow
can be seen along the coplanar line (x̂) as well as the angle of radiation ψ into the surface-wave
mode βρ,SWF .

3.3.2 Types of surface-waves

A printed transmission line can support three types of surface-waves.

• Transverse magnetic (T M) surface-waves
• Transverse electric (T E) surface-waves
• Transverse electromagnetic (T EM) surface-waves

A T EM-surface-wave is only supported by a parallel-plate-waveguide (PPW). In the developed
software-too, we will therefore only find this mode in a grounded coplanar-waveguide. The
tool is only able to account for the first surface-wave. A consequence is then, that dielectric
slabs can be modeled until an electrical height of λd/2, where λd is the wavelength inside the
dielectric. Larger slabs should be modeled as infinite dielectrics. The reasoning behind this
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choice is that, at this electrical height, the surface-wave losses are already comparable with the
losses due to direct radiation into an infinite dielectric. This surface-wave loss approximation is
explained and demonstrated in Section 4.4.

The first surface-waves appearing and accounted for in the software-tool, depending on the
structure to analyze, are:

• Strip and Coupled Stripes: T E0-surface-wave.
• Microstrip and Coupled Microstrip: T M0-surface-wave (or otherwise T E0-surface-

wave when a higher dense dielectric slab is on top of the microstrips)
• Stripline: T M0-surface-wave.
• Slot and CPW: T M0-surface-wave.
• Grounded CPW: T EM-surface-wave and possibly a T M0-surface-wave in the dielectric

slab on top of the grounded CPW.

In Section 4.3 and Section 4.4 several examples will be given regarding the characterization of
surface-wave and leaky-wave losses.

3.4 Impedance

An important aspect of antenna designers is to match the antennas to the transmission line in
order to minimize any reflection losses. Therefore it is very useful to know the characteristic
impedance of the transmission line. In this section, the model for calculating the characteris-
tic impedance will be explained. We will see that the characteristic impedance in this quasi-
analytical model is actually the impedance associated to the dominant propagating mode along
the transmission line. This impedance is then basically equivalent to calculating the residue
from the expression of the input-impedance seen from the ∆-Gap excitation. The goal of this
section is to discuss our used definition of characteristic impedance and relate this to the input-
impedance seen from the ∆-gap excitation. In Section 4.2 a comparison and validation of our
definition will be given.

3.4.1 Input impedance

The transmission lines are excited with a delta-gap excitation as was shown in Figure 3.2 for
both strip- and slot-type transmission lines. The longitudinal dimension of the delta-gap is
defined as ∆ = 0.7 ·ws. Starting from the magnetic- (electric-) current expressed as the inverse
Fourier transform in Eq. (3.8), the input impedance (admittance) of this delta-gap for slot-
(strip-) type transmission lines can be expressed as (3.44) [24].

ZSlot
in /Y Strip

in =
1

2π

∫ ∞

−∞

sinc2(kx∆
2 )

D(kx)
dkx (3.44)

The integration path −∞ < kx < ∞ requires to be deformed according to Cx shown in Figure
3.5, so that critical points in the spectrum such as branch-points and poles of propagation modes
will be avoided. In order to calculate the input impedance (admittance) of a specific mode, the
residue of this integral can be calculated in kx = kmode.

Characterization of Printed Transmission Lines at High Frequencies



CHAPTER 3. QUASI-ANALYTICAL MODEL FOR TRANSMISSION LINE
CHARACTERIZATION 41

Z0 Z0

Zin

Y0 Y0

Yin

a)

b)

Figure 3.15: Definition for characteristic- and input-impedance for a) slot-type and b) strip-type transmission
lines.

3.4.2 Characteristic impedance

The relation between the input impedance and characteristic impedance for slot-type and strip-
type transmission lines is shown in Figure 3.15 and can be described as Eq. (3.45).

ZSlot
0 = 2 ·ZSlot

in (3.45)a

Y Strip
0 = 2 ·Y Strip

in (3.45)b

In [25] and [26] it is shown that the current parallel to the slot and voltage over the slot can be
expressed as (3.46):

vl(x) = − 1
2π

2π j
1

D′(kmode)
e− jkmodex (3.46)a

il(x) ≈
1
2

e− jkmodex (3.46)b

And for strip-type transmission lines:

vl(x) ≈
1
2

e− jkmodex (3.47)a

il(x) = − 1
2π

2π j
1

D′(kmode)
e− jkmodex (3.47)b

By calculating the impedance as Z0 =
vl(x0)
il(x0)

, where x0 is an arbitrary finite distance away from
the near-field of the source, we obtain:

ZSlot
0 /Y Strip

0 =
−2 j

D′(kmode)
(3.48)

Note that these characteristic impedances are actually the residues of (3.44) without taking
account of averaging the fields over the ∆-gap, which is leading to the sinc2-term. (3.48) is
therefore the characteristic impedance for one specific mode which is propagating along the
transmission line. A more rigorous derivation of this definition of the characteristic impedance
(3.48) can be found in [27]. The characteristic impedance implemented in the software-tool
calculates the characteristic impedance in this manner and will in some cases differ from the
input impedance seen from the delta-gap excitation as will be seen in the example in Section 4.2.
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3.5 Ohmic losses

Ohmic losses in a printed transmission line not only comprises conductor losses but also dielec-
tric losses. This section will cover the implementation of both of them.

Firstly the implementation of dielectric losses will be discussed. This will be a brief discus-
sion as it turns out that a loss tangent can easily be converted to a complex relative permittivity.

Subsequently, we will discuss conductor losses. Conventionally, conductor losses are cal-
culated in various ways [28–32]. Quasi-analytical techniques can be used such as Wheeler’s
incremental inductance rule, but also full-wave analysis based on spectral domain approaches.
In this proposed quasi-analytical model, it turns out that the ground-planes of strip-type trans-
mission lines and the ground-plane of a grounded CPW can be characterized by the square-root
of frequency surface-impedance connected to the transmission lines representing the dielectric
slab. For conductor losses in the strip itself, a new dispersion equation can be constructed tak-
ing account of the non-zero tangential total electric field component, etot(x,y) in (3.1), which
can also characterized as a function of the surface impedance. A more rigorous derivation of
the new dispersion equation can be found in Appendix B. For slot-type transmission lines, the
losses will be implemented in the Green’s functions.

3.5.1 Dielectric losses

Printed transmission lines can suffer from dielectric losses. These losses can be defined in
the tool by means of a dielectric loss tangent tan(δ). This loss tangent is implemented in the
Green’s functions with a complex dielectric permittivity (3.49).

εlossy = ε0εr(1− j tan(δ)) (3.49)

Using εlossy, instead of ε0εr, directly in the Green’s function when defining your stratifications
(2.9) will characterize dielectric losses accurately as will be shown in Section 4.5.

Referring back to the discussion of the branch-cuts associated to the branch-points of the
infinite media ki in subsection 3.2.2, please note that the square-root type branch-cut coming
from kz,i =

√
k2

i − k2
ρ now becomes complex since ki will become complex. For example, when

the infinite media k1 and k2 in Figure 3.5 have the same non-zero loss tangent, the spectrum
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Figure 3.16: Longitudinal spectral plane (kx) for a CPW printed between two lossy infinite dielectrics.
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Figure 3.17: Equivalent transmission line models for a) a lossy microstrip and b) a lossy slotline.

will look like Figure 3.16. Additionally, any intrinsic surface-wave poles supported by the
stratification (kSFW in Figure 3.6) will now become complex.

3.5.2 Conductor losses

Besides dielectric losses, we need to take account of the conductor losses of a printed trans-
mission lines. Conductor losses in ground-planes for both slot-type (e.g. grounded-CPW) and
strip-type (e.g. microstrip, stripline) transmission lines can easily be implemented in the Green’s
functions; rather than applying a short-circuit to the transmission line representing the grounded
slab, one can connect a load to the transmission line. This load can be characterized by the high-
frequency surface impedance Eq. (3.50):

Zs = (1+ j)

√
k0ζ0

2σ
(3.50)

where k0 and ζ0 are the free-space wavenumber and impedance respectively and σ is the con-
ductivity of the conductor. An example is given in Figure 3.17a) where the ground-plane of
a lossy microstrip is represented by the bottom load ZL−bottom. ZL−bottom is now equal to the
surface impedance Zs rather than a short-circuit used for PEC.

The conductor losses for the main conductor of a strip-type transmission line are accounted
for by means of a surface impedance boundary condition. Imposing the EFIE on a lossy conduc-
tor gives rise to a non-zero tangential total electric field (etot) contribution; escatt =−m∆+etot
(3.1). The total electric field etot can be related to the strip’s surface impedance and current
along the line as is described in Eq. (3.51).

etot(x,y) = Zstrip(y)jeq(x,y) (3.51)
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It makes sense to define Zstrip with the square-root of frequency surface impedance Zs (3.50).
However, this constant surface impedance does not really make sense when looking at the shape
of the transverse fields in (3.1). The scattered electric field (escatt) and the ∆-gap excitation
(m∆) will have a rectangular shape. The total electric field is given by (3.51). When Zstrip is
assumed to be constant, the multiplication with the equivalent electric current jeq will result in
an electric field in the form of the quasi-static edge singularity function jt(y) (3.7). Therefore, it
makes more sense to define Zstrip proportional to the inverse of the quasi-static edge singularity
function as is shown in (3.52) and demonstrated in [18].

Zstrip = Zs

√
1−
(

2y
ws

)2

(3.52)

Accounting for the ohmic losses in the metal leads to a new denominator for the strip (3.53),
where I is the identity matrix. A more rigorous derivation of this result can be found in Ap-
pendix B.

Dloss(kx) = D(kx)+
2

wsπ
ZsI (3.53)

For slot-type transmission lines, since the IE is different, the conductor losses can be cal-
culated by following the approach proposed in [33]. The approach is based on applying the
equivalence principle on the slot region by replacing the region with the same lossy conductor
as the ground planes. The lossy conductor can then be implemented in the transmission-line
Green’s functions by means of an impedance, characterized by Zs in series with the stratifica-
tions as is shown in Figure 3.17b. However, applying the equivalence principle with a lossy
metal, results in a small, but non-zero, equivalent electric current, jeq. The quasi-analytical
model implemented in the MATLAB-tool is neglecting this contribution, as is shown in Fig-
ure 3.18a, by only solving the dispersion equation for meq. An alternative method is described
in [33, 34] which is, although not implemented, based on defining an effective magnetic cur-
rent, me, taking into account the equivalent electric current as is shown in Figure 3.18b, and
described by Eq. (3.54).

meq jeq

me

up

me

down

meq

meq

j 0eq≈ me = m + Z jeq s eqz +

a) b)

Figure 3.18: Equivalence principle on the slot region. a) Tangential equivalent electric current is neglected jeq = 0
b) An effective equivalent magnetic current is defined the identity me = meq +Zsẑ× jeq
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me = meq +Zsẑ× jeq (3.54)

Using Eq. (3.54), will allow for solving the dispersion equation for one unknown, but with
taking account of the electric current. It will result in an extra coupling term in the integral
equation. However, as will not be explained in this thesis, other problems will come along
when applying this approach.

3.6 Superconductivity

Besides the ohmic losses of a conductor, also the superconductive phenomenon is implemented,
making the tool suitable for characterizing more complex structures such as the transmission
lines (resonators) in Kinetic Inductance Detectors (KIDs) which are widely used in the THz-
domain for space-applications. The total current flowing on the superconductor is the super-
position of a current exhibiting normal losses and a loss-less superconductive current. This
assumption is referred to as the two fluid model [35]. The superconductors can be characterized
via a complex conductivity (3.55) [36].

σ = σ1 + jσ2 (3.55)

The real part of the complex conductivity σ1 represents the normal fluid conductivity while the
imaginary part σ2 represents the super fluid conductivity. The complex conductivity is intro-
duced in Zs as is studied in [37]. The surface impedance Zs used for the impedance boundary
condition for a superconductor at low temperature (σ1�σ2) can be characterized by Eq. (3.56):

Zs = Rs + jXs (3.56)

In (3.56), the surface resistance, Rs, and the surface reactance, Xs, can be calculated by Eq. (3.57):

Rs =
1

λL

σ1

2σ2
2

(3.57)a

Xs = ωµ0λL = ωLs (3.57)b

In Eq. (3.57), λL is the London penetration depth which is related to σ2 by Eq. (3.58).

λL =
1√

µ0σ2ω
(3.58)

In the software tool, the surface impedance can be given by providing a value for the sheet
inductance Ls and the real part of the conductivity. Zs in (3.56) can then be used in exact
the same way as is discussed in Section 3.5. In Section 4.6 we will see that superconductive
materials can have a significant effect on the propagation constant and characteristic impedance
of a transmission line. A change in propagation constant also will have its effect on the amount
of possible radiative losses. As said before, there are no equivalent formulas to estimate these
effect; one has to resort to full-wave simulations.
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Chapter 4

Transmission line examples and validation

Using the quasi-analytical model described in chapter 3, numerous interesting characteristics of
printed transmission lines can be analyzed. The model is used to generate a software tool which
is made freely accessible and capable of analyzing the most widely used transmission lines. The
user can select the materials and loss tangents of four possible stratifications; two finite dielec-
tric slabs and two infinite media. The stratifications are assumed to be homogeneous in the trans-
verse plane. A conductivity and loss tangent will account for the ohmic and dielectric losses in
the structure. The graphical user interface can be downloaded at http://terahertz.tudelft.nl/. The
output of the tool is composed out of four figures:

• The complex normalized wavenumber
• The effective dielectric constant
• The characteristic impedance
• Losses

This section will show examples, validation and a discussion of these transmission line char-
acteristics calculated by the discussed quasi-analytical model. The structures mainly used for
this validation are shown in Figure 4.1. The transverse dimensions, ws and d, are often chosen
to be the minimum transverse dimension typically possible for printed circuit board technol-
ogy; i.e. 100 µm. The minimum height of the dielectric slabs will be considered as 127 µm.
The conductor thickness is infinitesimal and the CPW is excited with a delta-gap excitation in
differential (propagating) mode as is described in Section 3.1.

H

w
s

a) b)

H

w
s

w
s

d

c)

H

Figure 4.1: Transmission lines used for validation. a) Microstrip, b) Slotline, c) Coplanar Waveguide (CPW); ws
is the width of the strip/slot, d is the width of the main conductor for a CPW and H is the height of the substrate.
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4.1 Complex normalized wavenumber

The complex normalized wavenumber k/k0, with k = β− jα and k0 the free-space wavenumber,
gives information regarding the dispersion of the transmission line and the losses associated to
it. The real part of the wavenumber, β, allows for calculating the effective dielectric constant of
the transmission line (4.1).

εr,e f f =

(
β
β0

)2

(4.1)

The imaginary part of the wavenumber, α is the superposition of all attenuative contributions.
These contributions can be conductor-, dielectric- and radiation losses. The attenuation constant
α, in Nepers, can then be converted to a loss figure; e.g. in dB/λe f f , where λe f f is the effective
wavelength of the propagating mode (4.2). Losses, in terms of radiation and ohmic-losses will
be validated later on in this chapter.

λe f f =
c

f
√εr,e f f

=
λ0√εr,e f f

(4.2)

Complex normalized wavenumber for a microstrip and CPW

In Figure 4.2, the real part of the complex normalized wavenumber, (β/β0), for a microstrip
(Figure 4.1a) with ws = 100µm, H = 127µm, εr = 11.9 and a CPW (Figure 4.1c) with ws =
100µm, d = 100µm, H = ∞ and εr = 11.9 is shown. The presented results are validated with
full-wave simulations done in CST where the main line parameters are extracted from the field
distribution along the strip and slots. It is clear that the quasi-analytical model implemented in
the software-tool can easily analyze transmission lines over a wide frequency range (a decade
in this case) to show the dispersive behavior of such line.

β
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Figure 4.2: Real part (β/β0) of the complex normalized wavenumber for a microstrip (Figure 4.1a) with ws =
100µm, H = 127µm, εr = 11.9 and a CPW (Figure 4.1c) with ws = 100µm, d = 100µm, H = ∞ and εr = 11.9. The
result is validated with full-wave CST simulations.
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4.2 Characteristic impedance

In this section we will validate the characteristic impedance calculated by the quasi-analytic
model. The procedure was explained in Section 3.4 and resulted in:

ZSlot
0 /Y Strip

0 =
−2 j

D′(kmode)

This characteristic impedance (admittance) is derived from the current en voltage distributions
along the slot (strip) and is only representing the contribution due to this one specific mode
kmode. It was explained that this impedance can change from calculating the impedance from
the input-impedance seen from the ∆-gap excitation. This will be shown in this section. Also
we will show that calculating the characteristic impedance with (3.48) close by singularities
in the spectral plane (i.e. branch-points and -cuts) can give rise to (big) differences with the
input-impedance. The reason for this difference is due to the fact that the ∆-gap excitation leaks
a significant amount of power in these singularities simultaneously.

4.2.1 Impedance for a slotline and microstrip

The characteristic impedance calculated from (3.48) is compared with the impedance seen from
the ∆-gap excitation; the input impedance (3.44). This is done for the microstrip (Figure 4.1a,
with ws = 100µm, H = 127µm and εr = 11.9) and a slotline printed in between two infinite
media (Figure 4.1b, with ws = 100µm, H = ∞ and εr = 11.9). In this comparison, (3.45) is
used to convert the input-impedance found from (3.44) to a characteristic impedance (see also
Figure 3.15). This comparison is shown in in Figure 4.3 and Figure 4.4 for the slotline and
microstrip respectively.

For as well the microstrip as the slotline, both procedures give approximately the same real
part of the characteristic impedance. However, for the imaginary part of the microstrip a differ-
ence can be seen between the two procedures; as the main propagating mode of a microstrip is
purely real, the characteristic impedance obtained by (3.48) is also purely real. Remember that
the characteristic impedance calculated is the impedance associated to the dominant propagating
mode along the transmission line. In contrast, (3.44) calculates the total input-impedance of the
delta-gap including the reactance of the port, resulting in an imaginary part of the impedance.

10
0

10
1

10
0

50

100

150

Frequency (GHz)

Z
[W

]

Impedance- Slotline

Im[Z]

Re[Z]}

2

}

CST - 2 Z· in

Residue - Z0

Integration - 2·Zin

Figure 4.3: Characteristic impedance for the slotline (Figure 4.1b) with ws = 100µm, d = 100µm, H = ∞ and
εr = 11.9. Residue is calculated from (3.48) and Integration from (3.44) and (3.45)
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Residue is calculated from (3.48) and Integration from (3.44) and (3.45)

This total input-impedance therefore can also cover space-wave excitation by the ∆-gap. The
impedances are validated with a full-wave CST simulation where Zin was extracted from the
Z11-parameter of the ∆-gap excitation port.

In the following section, we will see that when the dominant propagating mode is close-by
a branch-point or -cut, the characteristic impedance calculated by (3.48) can differ significantly
from the input impedance.

4.2.2 Impedance nearby spectrum singularities

A slotline is in fact not actually a transmission line; it can be highly radiative in the presence
of infinite media. The impedance comparison for the slotline in Figure 4.3 was still fairly good
until higher frequencies ( f < 100 GHz). However, when this highly radiative mode is close to
other singularities in the spectrum, such as branch-points and -cuts associated to leaky-waves
or space-waves, we will see that also these singularities are excited by the ∆-gap excitation.

In Section 4.3 we will discuss a slotline in the presence of an infinite dielectric. This dielec-
tric medium however, is separated by an air-gap of 100µm, decreasing the propagation constant
to (and even below) k0. The propagation constant of such slotline is given in Figure 4.10. It can
be seen that kmode is now close by a branch-point and -cut associated to the kT M0 leaky-wave.
Since kmode ≈ k0, it is also close by the branch-point of the infinite medium k0. Comparing in
this case the characteristic impedance with the input impedance seen from the ∆-gap excitation
results in Figure 4.5. Although the real part of the characteristic impedance of the main prop-
agating mode, kmode, in Figure 4.5 compares fairly good with the input impedance calculated
from (3.44) and (3.45), we can see big differences in the imaginary part of the impedance. The
reason for this is that not only the highly radiative slotline mode is excited by the ∆-gap exci-
tation, but there is also power excited in the space-wave (k0 branch-point) and the leaky-wave
(kT M0 branch-point).

When, instead of a slotline, a CPW (with ws = 100µm and d = 100µm) is excited in the
same stratification, we know that the fields of the dominant propagating mode is now more
confined to the transmission line itself; it is less radiative. This can also be seen in the impedance
comparison as is shown in Figure 4.6. Since the main propagating mode is now less radiative
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Figure 4.5: Characteristic impedance for a slotline with ws = 100µm, beneath an infinite dielectric with εr = 11.9,
separated by an air-gap of H = 100µm. Residue is calculated from (3.48) and Integration from (3.44) and (3.45)

it can be seen that the parallel excitation of the leaky- and space-wave is less significant. kmode
will still be close by the branch-points so differences in the characteristic- and input-impedance,
especially at higher frequencies ( f > 100 GHz), can still be seen.

Concluding we can say that care have to be taken in analyzing the characteristic impedance
calculated by the quasi-analytical model (3.48). As said, this impedance is purely the con-
tribution of the main propagating mode. As we have seen now, in the case when this main-
propagating mode is highly radiative and close-by any other singularities in the spectral plane,
the ∆-gap excitation also leaks power into these singularities (e.g. space- or leaky-waves), re-
sulting in a significant difference between input impedance and characteristic impedance of the
dominant mode.
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Figure 4.6: Characteristic impedance for a CPW with ws = 100µm, d = 100µm beneath an infinite dielectric with
εr = 11.9, separated by an air-gap of H = 100µm. Residue is calculated from (3.48) and Integration from (3.44)
and (3.45)
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4.3 Radiation into leaky- and surface-waves

In this section some examples are given of the characterization of printed transmission lines at
high frequencies in terms of surface- and leaky-wave excitation. We will investigate the excita-
tion of leaky- and surface-waves in two situations:

• A microstrip at high frequencies
• A slotline in the presence of an infinite dielectric, separated by an air-gap

It is known that the dominant mode of a microstrip does not become leaky unless anisotropic
substrates are used. However, as we will see, this bounded mode of a microstrip actually dis-
appears when the branch-point of the T M0-surface-wave is converging to kd . In this case, only
higher-order leaky modes will be present in the structure.

A slotline (and CPW) in the presence of an infinite dielectric, separated by an air-gap, is a
structure that can be used as an antenna (or transmission line) part of a leaky lens structure as
is shown in [38, 39]. In this structure we will not see multiple modes propagating. However,
as will be seen, the leaky-wave mode (subsection 2.3.2) is present in the spectrum. Although
the leaky-wave mode is not excited, we will see that the normalized propagation constant of
the propagating mode along the line can become lower than 1; βmode < β0. In this section we
also discuss a problem of the quasi-analytical model used. The problem lies in the transitions
between the Riemann-sheets for βmode > β0 and βmode < β0 which is giving discontinuities
in the propagating modes. This transition is then more carefully studied by means of a CST
validation. It turns out that indeed a transition will be made from one Riemann-sheet to another.
However, from the CST simulation we see that this transition happens smoothly. We conclude
that there is a need for a transition function in the quasi-analytical model.

4.3.1 Microstrip at high frequencies

For microstrip transmission lines printed on a isotropic substrate it is known that the conven-
tional bounded propagation mode will never evolve into a leaky surface-wave mode [12] as we
will show for a CPW and slotline in Section 4.4. However, higher order modes can occur when
the frequency increases. Also, these higher modes can become significant in terms of excitation
comparing to the bounded mode. In order to investigate these modes, consider the microstrip
shown in Figure 4.1a with ws = 50µm, H = 500µm and εr = 10.2 over a frequency range of

20GHz < f < 130GHz

resulting in an electrical height of the dielectric slab of

0.11λd < H < 0.69λd

The surface-waves and propagating modes for the specified frequency range are shown in
Figure 4.7. Mode A is obtained by integrating only over the real axis (Figure 3.11a); it shows
the conventional bounded microstrip mode. Mode B is extracted from the dispersion equation by
including the T M0-surface-wave in the transverse integration path (Figure 3.11b); it is therefore
only valid when kT E1 < kB < kT M0 , i.e. when the surface-wave condition (3.26) [11] is verified
with respect to the kT M0-surface-wave. When the transverse integration path also encloses the
T E1-surface-wave, the third mode, C, is obtained. As both surface-wave poles are enclosed,
this pole is only valid when kC < kT E1 < kT M0 .

In Figure 4.8, the current spectra are shown at the frequencies of 20 GHz, 50 GHz, 90 GHz
and 130 GHz. For an explanation about the different regions, branch-points and -cuts please
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Figure 4.7: T M0- and T E1-surface-waves and propagating modes for the microstrip shown in Figure 4.1a with
ws = 50µm, H = 500µm, εr = 10.2.

refer to Figure 3.6 and its associated explanation. The spectra in Figure 4.8 will be used to
explain four important regions which can be extracted from Figure 4.7:

1. f ≤ 40 GHz; one mode (A) is propagating. This is the conventional microstrip-mode and
will be strictly real; no surface-wave will be excited (see Figure 4.8 at 20 GHz).

2. 40 GHz < f < 90 GHz; the first mode (A) is still completely real. However, as can been
seen in Figure 4.8) at 50 GHz, a second mode, B, will excite the T M0-surface-wave since
kB < kT M0 .

3. 90 GHz < f < 110 GHz; this region is interesting since mode B is not physically valid
anymore (i.e. when kT E1 < kB < kT M0). As can be seen in the spectrum at 90 GHz, the
second mode, B, will cross the kT E1 boundary and disappears in the spectrum. Only the
first mode, A, is propagating in this frequency range and is purely real. This may also be
related to the transitions in the spectral plane as will be explained in subsection 4.3.2.

4. 110 GHz < f < 130 GHz; from f = 110 GHz, a third mode, C, will excite the T E1-
surface-wave. In the current spectrum at 130 GHz, it can also be seen that the first mode
A is merging with the kT M0-surface-wave-pole as the frequency is increasing; mode C will
be the main propagating mode in the microstrip.

This example shows the extreme dynamic behavior of a microstrip at high frequencies when
the dimensions of the slab become significant in terms of wavelength. The analysis of multiple
modes, other than just the dominant propagating mode, is not implemented in the MATLAB-
tool because of the complexity of finding and tracking these modes. However, in Section 4.4
we will investigate the significance of the higher-order modes and we will come to a conclusion
that dielectric slabs with H > 0.5λd should be modeled as an infinite dielectric.

Characterization of Printed Transmission Lines at High Frequencies



54 4.3. RADIATION INTO LEAKY- AND SURFACE-WAVES

Current Spectrum - Amplitude

1 3.532.521.5

Re[k /k ]x 0

Im
[k

/
k

]
x

0

20 GHz

50 GHz

90 GHz

130 GHzA

B

C

1 3.532.521.5

1 3.532.521.5

0

1.5

-1.5

0

1.5

-1.5

0

1.5

-1.5

0

1.5

-1.5
1 3.532.521.5

kTM0

kTM0kTE1

kTM0
kTE1

A

A

A

B
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Figure 4.9: Slot ws = 100µm in the presence an infinite dielectric with εr = 11.9 with an air-gap of H = 100µm.

4.3.2 Slotline in the presence of an infinite medium

In this subsection, a slotline in the presence of an infinite dielectric will be investigated. The
structure is shown in Figure 4.9, with a grounded air-gap of 100 µm below an infinite silicon
medium, simulating a dielectric lens with εr = 11.9. The first leaky-wave appearing in this
structure is the T M0-leaky-wave with a cutoff frequency of kc = 0. This first leaky-wave and
the main propagating mode are shown in Figure 4.10. Remember that the leaky-wave is intrinsic
to the stratification and does not depend on the slotline. We can see that the propagating mode
is always very close to the leaky-wave mode. Despite of the fact the surface-wave condition
(βmode < βLW ) is verified, the propagating mode is still on the top-Riemann sheet with respect
to the leaky-wave mode (Im[kmode] > Im[kLW ]); referring to Figure 3.7, the propagating mode
is located in region IIa. This means that the leaky-wave is not excited. In other words, kmode is
directly radiating into the infinite medium. This can also be seen when looking at the current
spectra as is shown in Figure 4.11 for 30 GHz, 100 GHz and 300 GHz. When the propagating
mode is obtained by following the integration path associated to spectral region IIa we obtain
Figure 4.10 and the subfigures a) to c) in Figure 4.11. We know that when βmode < β0, the
integration path associated to spectral region IIIa should be used, however in that case we have
the spectral plane in d) instead of c) at 300 GHz. It is clear that not a single mode is mathe-
matically valid between 155 GHz and 300 GHz. A transition is observed from Riemann-sheet
to Riemann-sheet resulting in a discontinuity of modes. This will be explained in the following
subsection.
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Figure 4.10: T M0- leaky-wave and propagating mode kmode for the structure in Figure 4.9
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Figure 4.11: Current spectra for the slotline in Figure 4.9 with ws = 100µm, H = 100µm, εr = 11.9 at 30 GHz,
100 GHz, 300 GHz. The branch-points and -cuts associated to the T M0-leaky-wave and infinite medium of air are
shown and the main propagating mode kmode from Figure 4.10. The propagating mode in the third subfigure (300
GHz - IIa) is obtained by integrating according to Figure 3.11c; therefore the pole is actually not mathematically
valid in this region (βmode < β0). Performing the correct transverse integration in the region βx < β0 (Figure 3.11e)
results in the fourth subfigure (300 GHz - IIIa); no mode is valid in the spectrum. A transition function is necessary
in suchlike situations.
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Transition in Riemann-sheets

When we zoom in on the propagation constant (Re[k]) in Figure 4.10 as is shown in Figure 4.12,
we can see that at 155 GHz, Re[kmode], now indicated with kmode-Region IIa, will become lower
than k0. Referring to the discussion on the different regions in the current spectrum in Sec-
tion 3.2 and Figure 3.7, we know that at this point the propagating mode crosses the log-type
branch-cut from Region IIa to Region III. Accordingly, the integration path in the transverse
domain should be changed from Figure 3.11c to Figure 3.11e. However, when the integration
path is changed correctly, the mode kmode-Region IIIa in Figure 4.12 is found which is larger
than β0 and is therefore also not mathematically valid in this region. Of course physically, there
should be a mode propagating along the line.

In order to prove that it is just the transition from sheet to sheet that gives the problem in the
quasi-analytical model, consider the same structure (Figure 4.9), but now with an air-gap of
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Figure 4.13: Propagating mode kmode for the structure in Figure 4.9 but with H = 1 mm. (· · · ) is obtained with a
transverse integration path as inFigure 3.11c and therefore only mathematically valid in Region II, i.e. k0 < kmode <
kd . (- - -) is obtained with a transverse integration path as in Figure 3.11e and therefore only mathematically valid
in Region III, i.e. kmode < k0. In 15 GHz < f < 24 GHz no pole is mathematically valid.
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Figure 4.14: Attenuation in [dB/λe f f ] for the structure in Figure 4.9 but with H = 1 mm. (· · · ) is obtained with a
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H = 1 mm. The electrical height of the air-gap is increased to show what happens after such
transition. The propagating modes are shown in Figure 4.13. The transition is in this case
from 15 GHz < f < 24 GHz; no pole is mathematically valid in this region. We can see that,
as expected, the propagation constant obtained by integrating as in Figure 3.11c, equals the
CST simulation before the transition. After the transition ( f > 25 GHz) we can see that the
propagation constant obtained by integrating as in Figure 3.11e, is converging towards the CST
simulation, also as expected. The same can be said, although it is less clear, for the imaginary
part of the wavenumber, which is expressed in dB/λe f f in Figure 4.14.

Concluding from this analysis we can say that, in this quasi-analytical model, the transition
of propagating modes to other Riemann-sheets can cause discontinuities in the wavenumber.
This happens because of a change in integration path in the transverse domain, making the
solution to the dispersion equation discontinuous. Physically, this transition happens smoothly.
A transition function in the quasi-analytical model is required.
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4.4 Surface-wave loss approximation

This section will conclude with the statement that when a dielectric slab with an electrical height
H > 0.5λd is present, the slab should be modeled as an infinite dielectric since the surface-wave
losses in such dielectric slab will compare with the radiation losses of an infinite medium. We
will start with analyzing a slotline printed on a 500µm slab, explaining the difficulties that arise
as multiple modes will propagate. The significance in the excitation of these multiple modes
is strongly varying. Subsequently, a CPW printed onto a large, but finite substrate is analyzed
where it can be seen that now one mode is propagating. The losses associated with this mode
can then be compared with radiation losses of a CPW in an infinite medium.

4.4.1 Slotline on a 500um substrate

In this example, the excitation of surface waves by a slotline is investigated (Figure 4.1b with
ws = 100µm, H = 500µm and εr = 11.9). The frequency range is

25 GHz < f < 140 GHz

equivalent to an electrical height of

0.14λd < H < 0.80λd

The surface-waves and propagating modes for this structure are shown in Figure 4.15. In this
frequency range, two surface-waves are of importance; the T M0- and T E1-surface-waves. It can
also be seen that two propagating modes are present in this frequency range [40]. The second
mode, B, is obtained by enclosing both surface-wave poles in the transverse integration path.
It is therefore that this mode is only mathematically valid when kB < kT E1 < kT M0 , i.e. f > 55
GHz. Figure 4.15 can be divided into three regions:

1. f ≤ 5 GHz; one mode (A) is propagating and will be strictly real; no surface-wave will be
excited.

2. 55 GHz < f < 72.5 GHz; the first mode (A) is still completely real, however a second-
mode will excite both the T M0- and T E1-surface-waves. This second mode has a large
imaginary part and is therefore highly attenuative.

3. 72.5 GHz < f < 140 GHz; the first-mode is verifying the surface-wave condition (kA <
kT M0) and will leak into the T M0-surface-wave. As the frequency approaches 140 GHz,
the first propagating mode (A) is converging to and eventually merging with kT M0 . The
second propagating mode (B) will then be the most significant mode.

It is desired to see the change in significance of the two propagating modes as a function
of the frequency. In order to calculate this, the power launched into each propagating mode
can be calculated. The magnetic current spectrum is plotted in Figure 4.16 at 120 GHz. The
points A and B are the poles related to the two propagating modes from Figure 4.15. The
discontinuities in the spectrum at Re[kx]/k0 = 2.8 and 3.2, are originating from the surface-
waves: when kx < kT M0 (and kx < kT E1), the residue of kT M0 (and kT E1) is enclosed in the
transverse integration as in Figure 3.6b). However, it can already be seen that magnitude of
the first propagating mode (A) is less than the magnitude of the second propagating mode (B)
at f = 120 GHz. From (3.46) and (3.47), it is clear that the amount of power going into the
propagating mode is proportional to the residue of the propagating mode in the current spectrum
(4.3). This is also described in [27].
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Figure 4.15: T M0- and T E1-surface-waves and propagating modes for a slotline (Figure 4.1b) with ws = 100µm,
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P ∝
1

D′(kpole)
(4.3)

We can now define a so-called launching efficiency, ηkx,A/kx,B , which represents the amount
of power going into the first propagating mode, kx,A, versus the amount of power going into the
second propagating mode, kx,B, in percent (4.4).

ηkx,A/kx,B =
|Res(kx,A)|

|Res(kx,A)|+ |Res(kx,B)|
·100%. (4.4)

When ηkx,A/kx,B is calculated in the range 85 GHz < f < 130 GHz, we obtain Figure 4.17.
From this figure, it is clear that the significance of the first mode A, decreases rapidly when the
frequency increase. Mode A converges to and merges with the surface-wave pole kT E1 , leaving
mode B to be the most significant mode.

Having multiple modes propagating in a structure makes it extremely difficult to determine
the amount of losses and significance of these losses in a transmission line. Also, predicting the
existence and initial kinit (see (3.21)) of multiple modes becomes a difficult procedure. We will
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Figure 4.17: Launching efficiency as is defined in (4.4) for the two propagating modes in Figure 4.15. It describes
the ratio of the power launched into modes A and B.

therefore analyze a CPW on a 500µm substrate were it can be seen that only one (leaky) mode
will propagate so that a fair comparison can be made between these surface-wave excitation
losses and the radiation of a CPW printed in between two infinite dielectrics.

4.4.2 CPW on a 500um substrate

The T M0- and T E1-surface-waves and propagating modes for a CPW (Figure 4.1c) with ws =
100µm, d = 100µm, H = 500µm and εr = 11.9 are shown in Figure 4.18. When the frequency
increases, the propagation constant of the T M0-surface wave mode will become larger than the
propagation constant of the transmission line. At this point the surface wave will be excited
and the surface wave poles have to be enclosed by the integration in the transverse domain
(see Figure 3.11b). It can be seen that at approximately 63 GHz, the surface-wave condition
βmode > βT M0 is verified. From this point on, the main propagating mode in the line becomes
associated to surface-wave losses. As opposed to the previously discussed slotline, only one
mode is physically valid as can be seen in the current spectrum at 140 GHz in Figure 4.19.
Three frequency ranges can be seen:

1. f ≤ 63 GHz; one mode (A) is propagating and will be strictly real; no surface-wave will
be excited. Mode A is obtained by integrating only over the real axis in the transverse
domain (Figure 3.11a).

2. 63 GHz < f < 110 GHz; the second mode (B), obtained by enclosing the T M0-surface-
wave in the transverse domain (Figure 3.11b), is propagating and exciting the first surface-
wave.

3. 110 GHz < f < 150 GHz; the third mode (C), obtained by enclosing both the T M0- and
T E1surface-waves in the transverse domain is verifying the surface-wave condition (kA <
kT E1 < kT M0) and will leak into both surface-wave. Mode B loses its physical validity.

In contract to the multiple propagating modes of the slotline (Figure 4.15), there is no need
to analyze the launching efficiency (4.4) of multiple modes in a CPW since only one mode is
valid at every frequency. Therefore, in the next example, we can study the amount of losses
associated to the crossing of these surface-wave boundaries (βmode < βSFW ), with the amount
of power radiated by a CPW printed in between two infinite dielectrics.
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Figure 4.19: Magnetic current spectrum for a CPW (Figure 4.1c) with ws = 100µm, d = 100µm, H = 500µm and
εr = 11.9 at f = 140 GHz. Point C is representing the propagating mode C from Figure 4.18. The branch-points
and -cuts for the surface-waves are shown.

4.4.3 CPW printed in between two infinite dielectrics

A CPW in the presence of an infinite dielectric half space simulating a silicon lens antenna is in-
vestigated; (Figure 4.1c) with ws = 100µm, d = 100µm, H = ∞ and εr = 11.9. The high density
infinite dielectric results in significant radiation of power in the lens which can be characterized
by the software tool. The propagation constant of the dominant mode is already validated in
Figure 4.2. As can be seen in the magnetic current spectrum at 140 GHz (Figure 4.21), the
leaky-wave pole will be located in Region II of the longitudinal spectrum in Figure 3.5. There-
fore, in the transverse domain, the integration path is required to travel through the bottom
Riemann-sheet with respect to k2 in order for the pole to be mathematically valid (see Figure
3.11c). The radiation loss of the transmission line can be extracted from the imaginary part of
this leaky-wave pole and is shown in Figure 4.20. It can be seen that at 200 GHz, approximately
3 dB/λe f f , where λe f f is the effective guided wavelength, is radiated inside the silicon.

With this information provided, a conclusion can be made concerning the loss comparison
between radiation into surface-waves and infinite media. This will be done in the following
subsection.
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Figure 4.20: Radiation loss for a CPW (Figure 4.1c) with ws = 100µm, d = 100µm, H = ∞ and εr = 11.9. The
result is validated with a full-wave CST simulation.
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Figure 4.21: Magnetic current spectrum for a CPW (Figure 4.1c) with ws = 100µm, d = 100µm, H = ∞ and
εr = 11.9 at f = 140 GHz. Point kmode is representing the main propagating mode in the structure. The branch-
point (k2) and -cuts from the infinite silicon medium is shown. The pole is located in Region II of Figure 3.5.

4.4.4 Surface-wave loss approximation

Analyzing the surface-waves and associated propagation modes of the slotline (Figure 4.15) it
could be seen that the amount of losses in a transmission line are difficult to analyze. Multiple
propagating modes are excited at a single frequency. The significance of each of these modes,
in terms of launching efficiency, requires to be studied before a conclusion about the losses
can be made. However, the surface-wave losses in a CPW, since only one mode is excited and
propagating, can be compared with radiation of a CPW into an infinite medium. This compar-
ison is shown in Figure 4.22). As reference, the conductor losses are also calculated where the
conductors have a finite conductivity of σ = 4.1 ·107 S/m. Curve B and C are associated to the
surface-wave losses of propagating modes B and C from Figure 4.18. Analyzing Figure 4.22, it
is clear that when the surface-wave is excited, the losses are soon comparable to the losses due to
direct radiation in the infinite dielectric. This is also verified using full-wave CST-simulations.

Taking into account the difficulties that arise with the possible existence of multiple modes
and the loss comparison in Figure 4.22, the proposed tool is only able to account for the first
surface-wave. In the case when a dielectric slab is larger than λd/2 in height, the medium
should therefore be modeled as an infinite dielectric.
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Figure 4.22: Loss comparison between a CPW (Figure 4.1c) printed onto a finite (H = 500µm) and infinite
(H = ∞) dielectric slab with ws = 100µm, d = 100µm and εr = 11.9. Also the ohmic losses are calculated where
the conductors have a finite conductivity of σ = 4.1 · 107 S/m. Curve B and C are associated to the surface-wave
losses of propagating modes B and C from Figure 4.18.

4.5 Ohmic losses

In chapter 3 we discussed the implementation of ohmic losses in the proposed quasi-analytic
model. Ohmic losses in a printed transmission line not only constitute conductor losses but also
dielectric losses. This section will validate both of them. We will see that the dielectric losses,
implemented by a complex relative permittivity, is accurately described by the model. Also
ohmic losses for strip-type structures can be analyzed accurately. However, as will be explained
in this section, the model is having troubles with accurately analyzing ohmic losses for slot-type
structures.

4.5.1 Dielectric losses

In subsection 3.5.1 we have shown that dielectric losses are characterized by a loss tangent
tan(δ). This loss tangent can be used to calculate a complex relative permittivity for the di-
electrics which can be implemented in the Green’s functions (2.9). The complex permittivity
was characterized by:

εlossy = ε0εr(1− j tan(δ))

The dielectric losses for a microstrip and CPW (Figure 4.1a and c) is validated with ws =
100µm, d = 100µm, H = 127µm and εr = 11.9. The dielectric slabs are characterized with a
loss tangent of tan(δ) = 0.005. The results are shown in Figure 4.23 and are validated with
CST. It can be seen that the quasi-analytical model is accurately describing dielectric losses.
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Figure 4.23: Dielectric losses for a microstrip and a CPW (Figure 4.1a and c) with ws = 100µm, d = 100µm,
H = 127µm and εr = 11.9. The dielectrics are characterized with a loss tangent of tan((δ)) = 0.005. The result is
validated with CST.

4.5.2 Conductor losses

In this subsection we will validate the conductor losses for a microstrip and CPW. As was ex-
plained in subsection 3.5.2, the losses for the ground-plane in a microstrip can be implemented
in the Green’s functions, while the losses for the strip itself results in a non-zero tangential total
electric field in (3.1) leading to a new denominator Dloss(kmode). The losses for slot-type struc-
tures were implemented in the Green’s functions by means of an impedance in series with the
stratification.

In Figure 4.24a the conductor losses of a microstrip (Figure 4.1a) is validated with ws =
100µm, H = 127µm, εr = 11.9 and σ = 4.1 ·107 S/m. For the microstrip, both main conductor
and ground-plane are non-perfect. The results are validated with Sonnet. The calculated ohmic
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Figure 4.24: Conductor losses for a) a microstrip and b) a CPW (Figure 4.1a) with ws = 100µm, d = 100µm
H = 127µm, εr = 11.9 and σ = 4.1 · 107 S/m. For the microstrip, both main conductor and ground-plane have a
finite conductivity. The results are validated with Sonnet.
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losses for the microstrip correlates nicely with the sonnet simulation. However in the last para-
graph of this section we will explain that this comparison has a catch, concerning a current
distribution assumption which is made.

In Figure 4.24b the conductor losses of a CPW (Figure 4.1c) is validated with ws = 100µm,
d = 100µm, H = 127µm, εr = 11.9 and σ = 4.1 ·107 S/m. In contrast to the microstrip valida-
tion, it can be seen that the conductor losses for the CPW differ significantly from the simula-
tion. The reason for this can be found in two assumptions. First, after applying the equivalence
principle on the slot region, a small equivalent electric current will be flowing in the slot area
giving rise to a coupling term as is explained in [33] and subsection 3.5.2. This coupling term is
neglected in the software-tool. Secondly, the use of one basis-function for the transverse current
distribution, ct(y), is not sufficient as can be seen in Figure 4.25; with small spacing d, the field
distribution Ey(y) is asymmetric.

Another cause for inaccuracy, for both slot- and strip-type structures, is the modeling of the
conductor to be infinitesimal. This assumption results in two consequences. First, no change
in field distribution is considered due to the presence of a finite thickness conductor. Secondly,
the current flowing on the top of the conductor is considered to be equal to the current flowing
on the bottom of the conductor. However, for a microstrip on top of a dense dielectric, the
current will mainly flow on the bottom of the conductor. This will have its influence on the
effective surface impedance of the conductor as is described in [41, 42]. However, these effects
are not considered in the proposed software tool. In fact, the Sonnet simulation in Figure 4.24a
also assumes that the current flowing on the top and bottom of the conductor are equal; this is
actually, as we explained, not the case.
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Figure 4.25: Ey(y)-field component of a CPW (Figure 4.1a) with ws = 100µm, H = 127µm, εr = 11.9 and σ =
4.1 ·107 S/m at f = 100 GHz. d = 50−350µm. This electric-field component, obtained from a CST-simulation,
represents the transverse current distribution ct(y).
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4.6 Superconductivity

The superconductive phenomenon is implemented by means of a surface-impedance as defined
in Section 3.6. We will study the effect of utilizing superconductive materials on the complex
wavenumber and characteristic impedance. For this we will give two examples.

Effect of superconductive materials on attenuation constant

We will study the effect of superconductivity on the radiation from a printed line. The struc-
ture used is a CPW with ws = 0.5− 2.0 µm, d = 0.5− 2.0 µm, f = 350 GHz, beneath an
infinite medium with εr = 10.33. Such transmission lines is widely used in the resonators of
Kinetic Inductance Detectors (KIDs). KIDs are commonly used in the THz-domain for space-
applications. The results are shown in Figure 4.26 where the radiative losses are compared
when PEC is used for the main conductors and when superconductors are used. The supercon-
ductors are characterized by a sheet inductance of Ls = 0.45 pH/sq. It can be seen that using
superconductive materials can have a significant impact on the complex wavenumber, in this
case the attenuation constant due to radiation.

Effect of superconductive materials on propagation constant and characteristic impedance

As a second example, we will study the effect of superconductivity on the characteristic impedance
and propagation constant of a CPW (Figure 4.1c) with ws = 1.5µm, d = 1.5µm, H = 10µm and
εr = 11.9. We have chosen a CPW printed onto a finite slab, because the Sonnet simulation on
an infinite dielectric from Figure 4.26 took hours. Again, in this comparison the superconductor
is characterized by a sheet inductance of Ls = 0.45 pH/sq. The comparison is shown in Figure
4.27. It is clear that using a superconductive material can have a significant influence on as well
the propagation constant as the characteristic impedance of a CPW. No analytical or equivalent
formulas can estimate these effects on the propagation constant and characteristic impedance of
a transmission line; one has to resort to the use of full-wave simulators.
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Figure 4.26: Effect of using a superconductor with Ls = 0.45 pH/sq is investigated on the amount of radiative
losses of a CPW (Figure 4.1c) with ws = 0.5− 2.0 µm, d = 0.5− 2.0 µm, f = 350 GHz, beneath an infinite
medium with εr = 10.33. The results are validated with Sonnet.
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The results are validated with Sonnet.
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Chapter 5

Conclusions and Future work

5.1 Summary and conclusions

In this thesis we discussed a quasi-analytical model allowing for fast characterization of printed
transmission lines. The characterization of a transmission line is done in terms of wavenumber,
characteristic impedance and losses due to both ohmic- and radiative losses. The need for this
quasi-analytical model comes from the fact that no analytical tools exist for the characterization
of printed transmission lines in terms of radiative losses; A few equivalent formulas exist for
approximating these phenomena that only cover a small subset of printed transmission lines.
A front-end designer has to resort to full-wave simulators which are time-consuming and also
require expensive licenses. The proposed quasi-analytical model allows for the characterization
of several interesting phenomena such as surface-wave excitation, radiation and superconduc-
tivity. The model is referred to as quasi-analytical as it depends on numerical integrations and
derivations.

The model is based on solving the dispersion equation, resulting from a spectral representa-
tion of the integral equations. This representation is formulated according to the transmission
line formalism. The Green’s functions used, can characterize printed transmission lines with
multiple and arbitrary stratifications, as long as they are homogeneous in the transverse plane.
Subsequently, this quasi-analytical model is tested by validating and discussing the transmis-
sion line characteristics with full-wave simulations. The quasi-analytical model is also imple-
mented in a software-tool which allows for a quick evaluation of the losses and impedance
matching. This software-tool is made freely available for download at our group’s website
(http://terahertz.tudelft.nl).

In chapter 2 we covered some basic theory needed for characterizing printed transmission
lines. We explained the need for using spectral Green’s functions after which the equivalent
transmission line spectral Green’s function model was discussed. It turned out that this for-
malism is extremely useful for characterizing transmission lines with arbitrary stratifications,
as long as they are homogeneous in the transverse plane. Subsequently we discussed the sin-
gularities that can be found in these Green’s functions. These singularities are associated to
space-waves, leaky-waves and surfaces-waves which are intrinsic to the stratification. The ba-
sic propagation mechanisms of leaky- and surface-waves were investigated where-after the field
distributions due to the singularities in the Green’s functions associated to these leaky- and
surface-waves were analyzed.

In chapter 3 the quasi-analytical model used for transmission line characterization was dis-
cussed. We started with imposing the Electric Field Integral Equation (EFIE) and Continuity of
Magnetic Field Integral Equation (CMFIE) on the strip and slot. After translating these integral
equations to the spectral domain we ended up with an expression for the longitudinal electric
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or magnetic current along the transmission line in terms of an inverse-Fourier transform. We
explained that the singularities in the integrand of this inverse-Fourier transform, the current
spectrum, are associated to the propagating modes along the transmission lines which can be
extracted by solving the dispersion equation.

We showed that solving this dispersion is non-trivial as it depends on the transverse inte-
gration path. With this in mind, a rigorous analysis of the longitudinal- and transverse spectral
plane was conducted. In this analysis we analyzed the present branch-points and -cuts where-
after we were able to define different regions in the spectral plane where we can find differ-
ent propagating modes with different characteristics. While making sure that the propagating
modes are physically valid, we explained the transverse integration path required to find these
different propagating modes. Finally, we investigated when the leaky- and surface-waves, ex-
plained in chapter 2, are actually excited on the transmission line. This condition is referred
to as the surface-wave condition and stated that when the propagation constant of the prop-
agating mode is lower than the propagation constant of the intrinsic surface-wave mode, this
surface-wave was excited.

Subsequently we described the procedure for calculating the characteristic impedance of
the transmission line. It was explained that this impedance was defined as the characteristic
impedance of the dominant propagating mode. Also the relation between the characteristic
impedance of the dominant propagating mode and the input-impedance seen from the delta-gap
excitation of the line was shown.

The next section discussed the implementation of ohmic losses in the quasi-analytical model.
Ohmic losses constitutes conductor losses and dielectric losses. The latter could be easily im-
plemented by defining a complex relative permittivity of the dielectrics using a loss tangent.
Conductor losses of any ground-planes were integrated in the Green’s function using the high-
frequency surface-impedance as a boundary condition. Conductor losses of a strip were imple-
mented by reformulating the EFIE where we had to take account of a non-zero total tangential
electric field. This field component led to a new dispersion equation to solve. Lastly, the con-
ductor losses of a slot were integrated in the Green’s function. However, we explained that
neglecting the, now non-zero, equivalent electric currents is giving rise to inaccuracy.

Finally, the implementation of the superconductive phenomenon was explained. It turned
out that superconductivity can be described by means of a complex surface-impedance where
the reactance was a function of the London penetration depth which is key parameter of super-
conductive material.

In chapter 4 we validated the quasi-analytical model from chapter 3. Dispersion behavior of
printed transmission lines over a wide frequency range could easily be analyzed. Subsequently
it was shown that the characteristic impedance of a highly attenuative propagating mode nearby
any spectrum singularities could differ significantly from the input-impedance seen from the
delta-gap excitation of the line.

The next section covered some examples regarding radiation into leaky- and surface-waves.
We started with the analysis of surface-wave excitation in a microstrip. It turned out that mul-
tiple (leaky) modes can be excited and propagate parallel to each other. The first example
showed the dynamic behavior of a microstrip at high frequencies when the dimensions of the
slab become significant in terms of wavelength. Subsequently a slotline in the presence of an
infinite dielectric, separated by an air-gap, was investigated. We saw that the main-propagating
mode becomes faster than the free-space wavenumber, making a transition in Riemann-sheets.
Concluding from this analysis we said that, in this quasi-analytical model, the transition of
propagating modes between different Riemann-sheets causes discontinuities in the wavenum-
ber. The reason for this discontinuity is a change in integration path in the transverse domain,
making the solution to the dispersion equation discontinuous. We showed that, physically, this
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transition happens smoothly. A transition function in the quasi-analytical model is required.
Subsequently we studied the amount of losses associated to surface-wave excitation. A con-

clusion was made after comparing the losses due to surface-wave excitation and direct radiation
of a CPW. After observing that these losses were soon in the same order of magnitude, we
concluded that dielectric slabs with an electrical height larger than half a wavelength should be
modeled as an infinite dielectric.

Finally in this chapter we validated the model for ohmic losses and superconductive mate-
rials. We saw that dielectric losses are accurately analyzed as well as the conductor losses for
strip-type structures. However, conductor losses for slot-type structures were observed to be
less accurate. We concluded that using one basis-function may not be sufficient together with
the fact that the equivalent electric currents were neglected.

The tool is made freely accessible from our group’s website at http://terahertz.tudelft.nl/.

5.2 Future work

The proposed quasi-analytical model proved to be working very accurately in characterizing
printed transmission lines. However, we have shown that a transition to a different Riemann-
sheet in the spectral plane can cause a discontinuity in the wavenumber. Some kind of transition
function between the different sheets is desired in these situations. Furthermore we have seen an
inaccuracy in characterizing the conductor losses in slot-type structures. Extended research is
necessary for constructing an integral equation capable of including the electric currents running
on the slot region, after applying the equivalence theorem.

The developed software-tool, based on the proposed quasi-analytical model, will be up-
dated according to any recommendations from users. Especially because the model is quasi-
analytical, the implementation of other features can easily be done. For example, losses in a
dielectric can also be described by means of a finite conductivity rather than a loss tangent.
Also, other definitions of the conductors surface-impedance can be implemented, taking into
account surface-roughness or features associated to a finite thickness of the conductors.

5.3 Publications

1. S.L. van Berkel, A. Garufo, A. Endo, N. LLombart and A. Neto, “Characterization of
Printed Transmission Lines at High Frequencies," The 9th European Conference on An-
tennas and Propagation (EuCAP 2015), Lisbon, Portugal Apr. 12-17, 2015.

2. To be submitted: A magazine article will be extracted from this thesis to be submitted to
the IEEE Antennas and Propagation Magazine.
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Appendix A

Construction of the Integral Equations

In this appendix, a more extensive derivation of the spectral integral equations is discussed. We
will start with the boundary conditions of the tangential electric (magnetic) field components
along the strip (slot). From there, a spatial representation of the integral equations will be
derived including multiple conductors. After expressing the integral equations in the spectral
domain and averaging the fields over the width of strip or the slot we will arrive at the final
expression used for this thesis; an inverse Fourier transform in the longitudinal domain of the
lines representing the longitudinal electric- or magnetic currents.

A.1 Formulation

We are considering two categories of integrated transmission lines based on the kind of current
running along the transmission line:

1. Strip-type structures (electric current j(x))
• Strip
• Microstrip
• Stripline
• Coupled stripes
• Coupled microstrip

2. Slot-type structures (magnetic current m(x))
• Slot
• Coplanar waveguide
• Grounded coplanar waveguide

We are assuming the transmission lines to be infinitely long along x̂, the conductors infinitesi-
mal and a homogeneity in the (x̂,ŷ)-plane. The width of the metal strips and slot is ws and the
spacing between the centers of two parallel lines is dy. For now, the conductors are assumed to
be lossless, later on they will be characterized by a boundary condition using the high-frequency
surface impedance Zs. The problem will be formulated according to two types of integral equa-
tions; the Electric Field Integral Equation (EFIE) for strip-type structures [15], [21] and the
Continuity of Magnetic Field Integral Equation (CMFIE) for slot-type structures [16].

A.2 Excitation and boundary conditions

The excitation of the transmission lines are modeled by a ∆-gap excitation, s∆(x,y), as is shown
in Figure A.1. For strip-type lines as in Figure A.1a, the excitation s∆(x,y) will be a magnetic
current m∆(x,y) while for slot-type lines as in Figure A.1b, the excitation s∆(x,y) will be an
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Δ

ws

Δ

a) Strip-type -GapΔ b) Slot-type -GapΔ

ws

jΔ

mΔ

Figure A.1: ∆-Gap excitation, s∆(x,y), for strip-type: m∆(x,y) (a) and slot-type: j∆(x,y) (b) transmission lines

electric current j∆(x,y). The longitudinal dimension of the excitation, ∆, will be defined as
∆ = 0.7 ·ws. For N coplanar lines, the excitation can be described as a vector s∆(x,y) (A.1)

s∆(x,y) = s∆(x,y)ŷ = n0(x)nt(y)ŷ (A.1)

with elements as in Eq. (A.2)

s∆,n(x,y) = n0,n(x)nt,n(y)

= s0,n · rect
(

x
∆

)
rect
(

y−ndy

ws

) (A.2)

for n = 0 : N − 1. In (A.2), dy is the spacing between the centers of the coplanar lines and
s0,n are the excitation coefficients in order to select any propagation modes. For example, in
the software-tool a maximum of two coplanar lines is possible. This leads to two possible
propagating modes (A.3):

scommon
0 =

[
1
1

]
(A.3)a

sdifferential
0 =

[
1
−1

]
(A.3)b

Figure A.2 shows the electric field distribution for a) common mode excitation and b) differ-
ential mode excitation for a coupled microstrip resulting from the excitation as is described in
Eq. (A.3).

With the defined excitation vector we will construct the EFIE and CMFIE form the boundary
conditions of tangential components of the electric- and the magnetic fields. Since we want to
analyze the magnetic- or electric currents flowing in the slot or on the strip, the equivalence
theorem is applied where a closed surface, S, can be defined along the strip or slot. On this
surface, the equivalent electric- ( jeq) and magnetic- (meq) currents are flowing according to the
boundary conditions in Eq. (A.4).

jeq = ẑ× (h+−h−) (A.4)a

meq =−ẑ× (e+−e−) (A.4)b

Outside the ∆-gap region for strip-type structures, the tangential electric field vanishes: ẑ×
e+ = ẑ×e− = 0. Therefore meq = 0 and only jeq remains. For thin conductors, which is the
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Magnetic
Wall

Electric
Wall

a) Common mode excitation

b) Differential mode excitation

Figure A.2: Electric field distribution for a) common mode excitation and b) differential mode excitation for a
coupled microstrip.

case, we will have j′eq = 2 jeq. For slots, the volume enclosed by the surface are conventionally
filled with PEC short-circuiting the equivalent electric currents so that only equivalent magnetic
currents are introduced. According to the image theorem we obtain m′eq = 2meq. From this
point, the equivalent current ceq either denotes j′eq or m′eq for the equivalent electric or magnetic
current respectively.

A.3 Spatial Integral Equations

After the equivalent currents are defined, we can combine both EFIE and CMFIE and enforce
the continuity of the fields:

ẑ×
∫∫

S
g̃(x− x′,y− y′)ceq(x

′,y′)dx′dy′ = s∆(x,y) (A.5)

where s∆ is the electric or magnetic excitation vector and ceq is the equivalent electric- (jeq)
or magnetic- (meq) currents for the EFIE or MFIE respectively. g̃(x− x′,y− y′) is the dyadic
Green’s function matrix in the spatial domain. The current distribution along the lines, ceq, is
considered to be separable in space-dependency (Eq. (A.6)),

ceq(x,y) = ceq(x,y)x̂= cx(x,y)ct(y)x̂ (A.6)

with

ceq,i(x,y) = cx,i(x)ct(y− idy) (A.7)

for i = 0 : N−1. The transverse current distribution ct(y) is assumed to be verifying the quasi-
static edge singularities (Eq. (A.8)). This assumption is valid for ws << λ.

ct(y) =
2

ws

1√
1− ( 2y

ws
)2

(A.8)
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Using the identity a×b×c = b(a ·c)−c(a ·b) on Eq. (A.5), we have ẑ× ẑ×a = ẑ(ẑ ·a)−
a(ẑ · ẑ), where a =

∫∫
S g̃(x− x′,y− y′)ceq(x

′,y′)dx′dy′. Since s∆(x,y) = s∆(x,y)ŷ is oriented
along ŷ, we can see that ẑ ·a = 0. Also ẑ · ẑ = 1 so that we obtain Eq. (A.9).

∫∫

S
g̃(x− x′,y− y′)ceq(x

′,y′)dx′dy′ =−ẑ× s∆(x,y)ŷ

= s∆(x,y)x̂
(A.9)

Observing that the right-hand side of Eq. (A.9) only has an x̂-component and the fact that the
equivalent currents ceq(x,y) is also oriented along x̂ (A.6), only the gxxx̂-component will be
required of the dyadic Green’s function matrix g̃. This will make the integral equation a scalar
problem and can therefore be rewritten into Eq. (A.10):

∫∫

S
g̃xx(x− x′,y− y′)ceq(x

′,y′)dx′dy′ = s∆(x,y) (A.10)

Eq. (A.10) comprises N equivalent currents, ceq, which are unknown and are equivalent to the
fields radiated by the N different ∆-gap excitations, s∆. One ∆-gap excitation, s∆,n, can therefore
be expressed as a summation of reaction integrals of all equivalent currents due to this ∆-gap
excitation and can be described as in Eq. (A.11):

N−1

∑
i=0

∫∫

Si

g̃xx(x− x′,y− y′)ceq,i(x′,y′)dx′dy′ = s∆,n(x,y) (A.11)

for n= 0 : N−1 and Si, is the region of the ith strip or slot. Averaging the integral equations over
the width of the strips or the slots brings us to our final expression for the Integral Equations for
N coplanar lines in the spatial domain Eq. (A.12):

N−1

∑
i=0

1
ws

∫

ws,n

∫∫

Si

g̃xx(x− x′,y− y′)ceq,i(x′,y′)dx′dy′dy =
1

ws

∫

ws,n

s∆,n(x,y)dy (A.12)

for n = 0 : N−1.

A.4 Spectral Integral Equations

Substituting s∆,n(x,y) (A.2) and ceq,i (A.7) into our expression for the Integral Equations in the
spatial domain (A.12) we obtain Eq. (A.13):

N−1

∑
i=0

1
ws

∫

ws,n

∫∫

Si

g̃xx(x− x′,y− y′)cx,i(x′)ct(y′− idy)dx′dy′dy

=
1

ws

∫

ws,n

s0,n · rect
(

x
∆

)
rect
(

y−ndy

ws

)
dy

= s0,n · rect
(

x
∆

)
(A.13)

for n = 0 : N− 1. A convolution in the spatial domain, which the IE of Eq. (A.13) is in fact
representing, is equal to a multiplication in the spectral domain. We can therefore express
Eq. (A.13) in terms of inverse Fourier transforms. Using the Fourier transforms in Eq. (A.14),
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and the shifts property of the Fourier Transform (A.15) we obtain the IE in terms of anti-Fourier
transforms Eq. (A.16).

g̃xx(x,y)
F→ G̃xx(kx,ky) (A.14)a

cx,i(x)
F→ Cx,i(kx) (A.14)b

ct(y) =−
2

wsπ
1√

1−
(

2y
ws

)2

F→ Ct(ky) =−J0

(
kxws

2

)
(A.14)c

n0,n(x) = s0,n · rect
(

x
∆

)
F→ N0,n(kx) = s0,n · sinc

(
kx∆
2

)
(A.14)d

ct(y− idy)
F→Ct(ky)e− jkyidy (A.15)

(
1

2π

)2 N−1

∑
i=0

1
ws

∫

ws,n

∫ ∞

−∞

∫ ∞

−∞
G̃xx(kx,ky)Cx,i(kx)Ct(ky)e− jkxxe− jkyye− jkyidydkxdkydy

=
1

2π

∫ ∞

−∞
N0,n(kx)e− jkxxdkx

(A.16)

for n = 0 : N− 1, The integral
∫

ws,n
· · ·dy, responsible for the averaging of the fields over the

width of the strip or slot, on the left-hand side of the integral equation (A.13) is equivalent to
the integration

∫ ∞
−∞ · · · rect(y+ndy

ws
)dy so that Eq. (A.16) becomes:

(
1

2π

)2 N−1

∑
i=0

1
ws

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G̃xx(kx,ky)Cx,i(kx)Ct(ky)rect

(
y+ndy

ws

)
e− jkxxe− jkyy · · ·

· · ·e− jkyidydkxdkydy =
1

2π

∫ ∞

−∞
N0,n(kx)e− jkxxdkx

(A.17)

for n = 0 : N−1. The integral in y can be solved using (A.18), where the time shift property of
a Fourier transform, as in (A.15), is also used and will result in (A.19).

1
ws

∫ ∞

−∞
rect
(

y+ndy

ws

)
e− jkyydy = sinc

(
kyws

2

)
e jkyndy (A.18)

(
1

2π

)2 N−1

∑
i=0

∫ ∞

−∞

∫ ∞

−∞
G̃xx(kx,ky)Cx,i(kx)Ct(ky)sinc

(
kyws

2

)
e− jkxx · · ·

· · ·e− jky(i−n)dydkxdky =
1

2π

∫ ∞

−∞
N0,n(kx)e− jkxxdkx

(A.19)

for n = 0 : N−1. Rearranging the terms in order to define the space-convolution integral D(kx):
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1
2π

N−1

∑
i=0

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
G̃xx(kx,ky)Ct(ky)sinc

(
kyws

2

)
e− jky(i−n)dydky

)
Cx,i(kx)e− jkxxdkx

=
1

2π

∫ ∞

−∞
N0,n(kx)e− jkxxdkx

(A.20)

for n = 0 : N−1. In Eq. (A.20), the integral inside the parenthesis will be defined as Dn,i(kx):

Dn,i(kx) =
1

2π

∫ ∞

−∞
G̃xx(kx,ky)Ct(ky)sinc

(
kyws

2

)
e− jky(i−n)dydky (A.21)

Our final expression for the Integral Equations in the spectral domain is now (A.22):

1
2π

N−1

∑
i=0

∫ ∞

−∞
Dn,i(kx)Cx,i(kx)e− jkxxdkx =

1
2π

∫ ∞

−∞
N0,n(kx)e− jkxxdkx (A.22)

for n = 0 : N−1.

A.5 Longitudinal electric- and magnetic currents

Equating the integrands brings us the following relationship:

N−1

∑
i=0

Dn,i(kx)Cx,i(kx) = N0,n(kx) (A.23)

And in matrix form:

D(kx) ·Cx(kx) = N0(kx) (A.24)a
Cx(kx) = D−1(kx) ·N0(kx) (A.24)b

Conclusively, the electric or magnetic currents can be expressed as an inverse Fourier transform
of its current spectrum in Eq. (A.24)b:

cx(x) =
1

2π

∫
D−1(kx) ·N0(kx)e− jkxxdkx (A.25)

with:

N0,n(kx) = s0,nsinc
(

kx∆
2

)
(A.26)

Dn,i(kx) =
1

2π

∫
G̃xx(kx,ky)Ct(ky)sinc

(
kyws

2

)
e− jky(i−n)dydky (A.27)

Ct(ky) = −J0

(
kxws

2

)
(A.28)

This formulation is also known as the transmission lie formalism. Extracting the singularity
from the current spectrum associated to the main propagating mode along the transmission line
(i.e. solving the dispersion equation) from the basis of this quasi-analytical model.
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Appendix B

Integral Equation with conductor losses
for strip-type structures

In this appendix, the integral equations constructed in Appendix A will be expanded in order to
include conductor losses for strip-type structures. The conductor losses for the main conductor
of a strip-type transmission line are accounted for by means of a surface impedance boundary
condition. We will start by imposing the EFIE on a lossy conductor which will give rise to a
non-zero tangential total electric field. The total electric field can then be related to the strip’s
surface impedance and current along the line. Accounting for the ohmic losses in the metal
leads finally to a new denominator for the strip D̃(kx).

We will start from the initial expression for the EFIE as in Eq. (B.1)

escatt(x,y) =−m∆(x,y)+etot(x,y) (B.1)

In (B.1), escatt and m∆ are the tangential components of the scattered electric field and incident
field respectively. The incident field is characterized by a ∆-gap excitation. In Eq. (B.5), the
tangential total electric field etot is equal to zero, which is only the case for perfect electric
conductors. However, in the case of conductor losses, the total electric field will be related to
the strip’s surface impedance and current along the line as is described in Eq. (B.2)

etot(x,y) = Zstrip(y)jeq(x,y) (B.2)

In this appendix we will start by investigating this surface impedance Zstrip(y) and reformu-
late the transmission line formalism as in Eq. (A.25).

B.1 Surface impedance

It makes sense to define Zstrip(y) with the high-frequency surface impedance Zs (B.3).

Zs = (1+ j)

√
k0ζ0

2σ
(B.3)

However, this constant surface impedance does not really make sense when looking at the shape
of the transverse fields in (B.1) as is shown in Figure B.1. The scattered electric field (escatt)
and the incident electric field (m∆) will have a rectangular shape. The total electric field is
given by (B.2). When Zstrip is assumed to be the high-frequency surface impedance Zs, the
multiplication with the equivalent electric current jeq will result in an electric field in the form
of the quasi-static edge singularity function jt(y). It makes sense to define Zstrip proportional to
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-w /s 2 w /s 2

einc
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-w /s 2 w /s 2

etot

y

Figure B.1: Tangential electric field components from the Electric Field Integral Equations; einc = m∆, escatt and
etot = Zs jeq

the inverse of the quasi-static edge singularity function as is shown in (B.4) and demonstrated
in [18].

Zstrip = Zs

√
1−
(

2y
ws

)2

(B.4)

B.2 Integral Equation

Substituting the non-zero tangential component of the electric field (B.2) in our final expression
of the EFIE for N coplanar lines in the spatial domain from Eq. (A.12) we obtain Eq. (B.5).

N−1

∑
i=0

1
ws

∫

ws,n

∫∫

Si

g̃xx(x− x′,y− y′) jeq,i(x′,y′)dx′dy′dy

=
1

ws

∫

ws,n

[
m∆,n(x,y)+Zstrip(y) jeq,n(x,y)

]
dy

(B.5)

for n = 0 : N − 1. The excitation and equivalent currents in the spatial integral equation in
Eq. (B.5) can be expanded resulting in Eq. (B.6).

N−1

∑
i=0

1
ws

∫

ws,n

∫∫

Si

g̃xx(x− x′,y− y′) jx,i(x′) jt(y′− idy)dx′dy′dy

=
1

ws

∫

ws,n

[
s0,n · rect

(
x
∆

)
rect
(

y−ndy

ws

)
+Zstrip(y−ndy) jx,n(x) jt(y−ndy)

]
dy

=
1

ws

∫

ws,n

[
s0,n · rect

(
x
∆

)
−Zs

2
wsπ

jx,n(x)
]

dy

(B.6)

for n = 0 : N−1. In the last step, we made use of the fact that

Zstrip(y) jt(y) = Zs

√
1−
(

2y
ws

)2

·− 2
wsπ

1√
1−
(

2y
ws

)2

=−Zs
2

wsπ

Making the same steps as in Appendix A, Eq. (B.6) can be expressed in terms of inverse Fourier
transforms after which we obtain Eq. (B.7)
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(
1

2π

)2 N−1

∑
i=0

1
ws

∫

ws

∫ ∞

−∞

∫ ∞

−∞
G̃xx(kx,ky)Jx,i(kx)Jt(ky)e− jkxxe− jkyye− jkyidydkxdkydy

=
1

ws

∫

ws,n

1
2π

∫ ∞

−∞

[
N0,n(kx)−Zs

2
wsπ

Jx,n(kx)

]
e− jkxxdkxdy

(B.7)

for n = 0 : N − 1. As in Appendix A, closing the integral in y and defining the transverse
integral Dn,i(kx), Eq. (B.7) can be simplified to our final expression for the Integral Equation for
N coplanar conductors in the spectral domain. This final spectral Integral Equation is shown in
Eq. (B.8) for n = 0 : N−1.

1
2π

N−1

∑
i=0

∫ ∞

−∞
Dn,i(kx)Cx,i(kx)e− jkxxdkx =

1
2π

∫ ∞

−∞

[
N0,n(kx)−Zs

2
wsπ

Jx,n(kx)

]
e− jkxxdkx (B.8)

for n = 0 : N−1.

B.3 Longitudinal electric current

Proceeding by equating the integrands of Eq. (B.8) and bringing the loss component Zs
2

wsπJx,n(kx)
to the left-hand side of the equation results in::

N−1

∑
i=0

Dn,i(kx)Jx,i(kx) = N0,n(kx)−Zs
2

wsπ
Jx,n(kx) (B.9)

N−1

∑
i=0

Dn,i(kx)Jx,i(kx)+Zs
2

wsπ
Jx,n(kx) = N0,n(kx) (B.10)

for n = 0 : N−1. And in matrix form, these former expressions will be equivalent to:

D(kx) · Jx(kx)+Zs
2

wsπ
INJx(kx) = N0(kx) (B.11)a

(
D(kx)+Zs

2
wsπ

IN

)
· Jx(kx) = N0(kx) (B.11)b

Jx(kx) =

(
D(kx)+Zs

2
wsπ

IN

)−1

·N0(kx) (B.11)c

As we can see, accounting for the ohmic losses in the conductors leads to a new denominator
for the strip (B.12), where IN is a N×N identity matrix.

Dloss(kx) = D(kx)+Zs
2

wsπ
IN (B.12)

Substituting Eq. (B.12) into Eq. (B.11)c leads to Eq. (B.13):

Jx(kx) = Dloss(kx)
−1 ·N0(kx) (B.13)

Conclusively, the electric currents, expressed as an inverse Fourier transform are:

jx(x) =
1

2π

∫
D−1

loss(kx) ·N0(kx)e− jkxxdkx (B.14)
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with:

N0,n(kx) = s0,nsinc
(

kx∆
2

)
(B.15)

Ct(ky) = −J0

(
kxws

2

)
(B.16)

Dloss
n,i (kx) =

1
2π

∫
G̃xx(kx,ky)Jt(ky)sinc

(
kyws

2

)
e− jky(i−n)dydky for n 6= i (B.17)

Dloss
n,i (kx) =

1
2π

∫
G̃xx(kx,ky)Jt(ky)sinc

(
kyws

2

)
e− jky(i−n)dydky +Zs

2
wsπ

for n = i (B.18)
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Appendix C

Green’s functions for various printed
transmission lines

In this chapter we will show the derivation of the Green’s functions of several printed transmis-
sion lines of interest. We will start from the Green’s function components used in the integral
equation constructed in chapter 3.

C.1 Green’s Functions

In chapter 3 it became clear that the integral equation can be expressed in its scalar form; only
the xx-components of the Green’s functions are needed. We ended with the spectral Green’s
functions of an electric or magnetic source oriented along x̂ [18]:

GEJ
xx =−

vJ
T Mk2

x + vJ
T Ek2

y

k2
ρ

(C.1)a

GHM
xx =−

iMT Ek2
x + iMT Mk2

y

k2
ρ

(C.1)b

In these expressions, vT E/T M and iT E/T M are the voltages and currents along the equivalent
transmission line structures representing the TE or TM modes. These equivalent transmission
lines will be evaluated in the next two sections.

C.2 Single transmission lines

In this section we will derive the expressions for the spectral Green’s functions for single trans-
mission lines in a plane-stratified media problem. In these problems four possible stratifications
are considered:

1. An infinite top medium
2. A finite upper slab
3. A finite lower slab
4. An infinite bottom medium

These stratifications all have their specific relative permittivity εr and can also be specified by
a specific loss tangent δ representing the dielectric losses. As we have four stratifications, the
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z=0

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

ZL-bottom

Z0-upper

Z0-lower

a) b)

ZL-bottom

z=hupper

z=-hlower

Zin-up

Zin-down

Z0-upper

Z0-lower

z=0

z=0

ZL-top

Figure C.1: General equivalent transmission line models for a) an electric source and b) a magnetic source.

equivalent transmission line model contains four transmission lines. The equivalent transmis-
sion line circuits for an electric and magnetic source are depicted in Figure C.1a) and Fig-
ure C.1b) respectively.

C.2.1 Strip

Both top and bottom media are infinite, these transmission lines can therefore be characterized
as loads connected to the finite transmission lines representing the upper and the bottom slabs.
The equivalent transmission line circuit for a strip is shown in Figure C.2.

ZT E
Lbottom

=
ζ0√εrbottom

kbottom

kzbottom

ZT M
Lbottom

=
ζ0√εrbottom

kzbottom

kbottom
(C.2)a

ZT E
Ltop

=
ζ0√εrtop

ktop

kztop

ZT M
Ltop

=
ζ0√εrtop

kztop

ktop
(C.2)b

The upper and lower slabs can be characterized as transmission lines. Characteristic impedances
of these transmission lines, depending on the type of dielectric can be calculated as:

z=0

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

ZL-bottom

Z0-upper

Z0-lower

Figure C.2: Equivalent transmission line model for a strip
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ZT E
0upper

=
ζ0√εrupper

kupper

kzupper

ZT M
0upper

=
ζ0√εrupper

kzupper

kupper
(C.2)c

ZT E
0lower

=
ζ0√εrlower

klower

kzlower

ZT M
0lower

=
ζ0√εrlower

kzlower

klower
(C.2)d

from these characteristic impedances, we can calculate the input impedances looking from the
source to the upper and lower half of the structure:

ZT E/T M
inup

= ZT E/T M
0upper

ZT E/T M
Ltop

+ZT E/T M
0upper

tanh( jkT E/T M
ztop hupper)

ZT E/T M
0upper

+ZT E/T M
Ltop

tanh( jkT E/T M
ztop hupper)

(C.2)e

ZT E/T M
indown

= ZT E/T M
0lower

ZT E/T M
Lbottom

+ZT E/T M
0lower

tanh( jkT E/T M
zbottom hlower)

ZT E/T M
0lower

+ZT E/T M
Lbottom

tanh( jkT E/T M
zbottom hlower)

(C.2)f

Note that inside the tanh , a j is implemented. This is due to our definition of the propagation
constant, which is k = β+ jα′. Multiply k with j to obtain the conventional propagation con-
stant: γ = jk =−α′+ jβ = α+ jβ as is being used in Pozar [20].

Using these input impedances for the upper and lower half of the structure we can calculate vJ
T E

and vJ
T M:

vJ
T E =

ZT E
inup ZT E

indown
ZT E

inup+ZT E
indown

(C.3)

vJ
T M =

ZT M
inupZT M

indown
ZT M

inup+ZT M
indown

(C.4)

which can be substituted in Eq. (C.1)a.

C.2.2 Microstrip

The microstrip is one of the most commonly used transmission lines. The main difference
between a microstrip and the strip in the previous subsection is the ground plane beneath the
dielectric. This results in the fact that the transmission line, which is representing the lower
slab, can be short circuited rather than connected to the characteristic impedance of the infinite
bottom medium. This short-circuit is only valid when the ground plane is lossless, in the case of
a ground plane with finite conductivity the short-circuit can be replaced by a load characterized
by the high-frequency surface impedance. The equivalent transmission line circuit is shown in
Figure C.3.

The top medium is infinite, this transmission line can therefore be characterized as a load
connected to the finite transmission line representing the upper slab. As explained, the ground
plane simulates a short-circuit:

ZT E
Lbottom

= 0 ZT M
Lbottom

= 0 (C.5)a

ZT E
Ltop

=
ζ0√εrtop

ktop

kztop

ZT M
Ltop

=
ζ0√εrtop

kztop

ktop
(C.5)b

The slabs can be characterized as transmission lines with a specific characteristic impedance
in the same way as with the strip. From these characteristic impedances, together with Eq. (C.2)e
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z=0

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

Z =0L-bottom

Z0-upper

Z0-lower

Figure C.3: Equivalent transmission line model for a microstrip

and Eq. (C.2)f, we can calculate the input impedances looking from the source to the upper and
lower half of the structure:

ZT E/T M
inup

= ZT E/T M
0upper

ZT E/T M
Ltop

+ZT E/T M
0upper

tanh( jkT E/T M
ztop hupper)

ZT E/T M
0upper

+ZT E/T M
Ltop

tanh( jkT E/T M
ztop hupper)

(C.5)c

ZT E/T M
indown

= ZT E/T M
0lower

tanh( jkz0lower
hlower) (C.5)d

Using these input impedances for the upper and lower half of the structure we can calculate
vJ

T E and vJ
T M by substituting them into Eq. (C.3) and Eq. (C.4). From vJ

T E and vJ
T M the Green’s

function in Eq. (C.1)a can be calculated.

C.2.3 Stripline

The stripline is less popular than the microstrip as a printed transmission line but can be used
when shielding from external EM-sources is of importance. This is because the strip has both
below and above ground planes. Now not only the transmission line representing the lower slab
is short circuited but also the transmission line representing the upper slab is short-circuited.
Again, we assume the ground plane to be a perfect electric conductor. The equivalent transmis-
sion line circuit for a stripline is shown in Figure C.4.

In this case both the transmission lines representing the upper and lower slabs are short
circuited because of the two ground planes.

ZT E
Lbottom

= 0 ZT M
Lbottom

= 0 (C.6)a
ZT E

Ltop
= 0 ZT M

Ltop
= 0 (C.6)b

The input impedances looking from the source to the upper and lower half of the structure
are now:

z=0

z=hupper

z=-hlower

Zin-up

Zin-down

Z =0L-top

Z =0L-bottom

Z0-upper

Z0-lower

Figure C.4: Equivalent transmission line model for a stripline
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z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

ZL-bottom

Z0-upper

Z0-lower

z=0

z=0

Figure C.5: Equivalent transmission line model for a slotline

ZT E/T M
inup

= ZT E/T M
0upper

tanh( jkzupperhupper) (C.6)c

ZT E/T M
indown

= ZT E/T M
0lower

tanh( jkzlowerhlower) (C.6)d

Again, we use Eq. (C.3), Eq. (C.4) and Eq. (C.1)a to calculate the Green’s function.

C.2.4 Slotline

The slotline can be considered as the reciprocal of the strip. The slotline itself is not considered
to be a good transmission line as it could be highly radiative. It will behave as an antenna and is
therefore also useful to include in this quasi-analytical model. However, two slotlines next two
each other will be a CPW and that is a transmission line widely used.

As with the strip, both top and bottom media are infinite. The input impedances looking from
the source to the upper and lower half of the structure are exactly the same as with the strip (See
Eq. (C.2)). However, the two half planes are completely separated resulting in a summation of
the Green’s function in the upper half plane and the Green’s function in the lower half plane.
The equivalent transmission line circuit of a slotline is shown in Figure C.5. Using these input
impedances for the upper and lower half of the structure we can calculate iMT E and iMT M:

iMdown
T E =

1
ZT E

indown

iMdown
T M =

1
ZT M

indown

(C.7)a

iMup
T E =

1
ZT E

inup

iMup
T M =

1
ZT M

inup

(C.7)b

Substituting Eq. (C.7) in Eq. (C.1)b gives us the Green’s function of the slotline:

GHM
xx =−

iMdown
T E k2

x + iMdown
T M k2

y

k2
ρ

−
iMup
T E k2

x + iMup
T M k2

y

k2
ρ

(C.8)

C.3 Multiple transmission lines in parallel

The power of using the Green’s function is that we can use exact the same dyadic as for the
single transmission lines. In fact, the Green’s functions are a description of the stratifications
in absence of the strip or slot. All the changes in relation to the single transmission line can be
defined in the denominator D(kx) and the excitation coefficients in N0(kx).
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C.4 Ohmic losses in the stratification

Ohmic losses in the stratification of printed transmission lines can directly be integrated in
the transmission line Green’s functions. Dielectric losses are modeled with a complex relative
permittivity, defined from a loss tangent as is described in subsection 3.5.1.

Furthermore conductor losses in any ground-planes can be present. Previously, the ground-
planes were modeled as a short-circuit, representing a PEC. In the case that these ground-planes
are not perfectly electrically conducting, they can be modeled with a load characterized by the
high-frequency surface-impedance. An example is given in Figure C.6a where the transmission
line representing the lower dielectric slab is now closed with the load Zs; the high-frequency
surface-impedance.

In subsection 3.5.2 it is explained that the losses in the main ground-planes of slot-type
transmission lines can be characterized by means of the high-frequency surface-impedance in
series with the stratification. An example is shown in Figure C.6b.

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

ZL-bottom

ZL-upper

ZL-lower

z=0

z=0

Zs

Zs

z=0

z=hupper

z=-hlower

Zin-up

Zin-down

ZL-top

Z = ZL-bottom s

ZL-upper

ZL-lower

a) b)

Figure C.6: Equivalent transmission line models for a) a lossy microstrip and b) a lossy slotline.
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Appendix D

Calculating residues

As is explained in Section 3.2, some integrations paths require to add the residue of a certain
pole in the current spectrum. More specifically, as is discussed, when kx < kSFW a surface-wave
or leaky-wave will be excited and the associate pole of the surface-wave mode in the transverse
spectral plane should be included in the integration path. The inclusion of the pole is accounted
for by, instead of only integrating over the real axis −∞ < ky < ∞, also adding the residues of
the poles ±ky,SFW in the ky domain. As these poles are located in the transverse spectral plane,
the residues should be calculated in the ky-domain. Another situation where the residue should
be calculated is when the current contribution of a specific propagation mode is investigated.
The total current calculated by following the integration path Cx in Figure 3.5 encloses all the
contributions of all propagating modes in the transmission line while calculating the residue in
kx only accounts for the specific contribution of this mode. This propagating mode is located in
the longitudinal spectral plane and therefore the residue should be calculated in the kx-domain.
In this chapter the method of calculating the residues in kx and ky will be elaborated.

D.1 Residue in the longitudinal spectral plane

As explained, the electric or magnetic currents, c(x), can be expressed as an inverse Fourier
transform in the longitudinal domain of the lines (D.1):

c(x) =
1

2π

∫ ∞

−∞
D−1(kx) ·N0(kx)e− jkxxdkx (D.1)

In this equation we have the denominator D(kx) representing the average transverse electric or
magnetic field on the strip or slot, radiated by the equivalent currents. N0(kx) is the Fourier
transform of the longitudinal excitation law which can be expressed as a multiplication of the
excitation coefficients and longitudinal excitation field. The inverse matrix D−1(kx) can be
represented as

D−1(kx) =
A(kx)

|D(kx)|
(D.2)

where
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A(kx) is the adjugate of D(kx) (D.3)a
|D(kx)| is the determinant of D(kx) (D.3)b

When this decomposition (D.2) is substituted in, (D.4) we obtain:

c(x) =
1

2π

∫ ∞

−∞

A(kx)

|D(kx)|
·N0(kx)e− jkxxdkx (D.4)

Evaluating the current for the propagating modes kmode can therefore be performed by applying
the residue theorem to (D.4):

cmode(x) =−
1

2π
2π jRes(kmode)e

− jkmodexx̂ (D.5)

where:

Res(kmode) =
A(kmode)

|D(kmode)|′
·N0(kmode) (D.6)

In order to solve this residue, the inverse of the current spectrum (D.7) will be used (D.8):

C(kx) = D−1(kx) ·N0(kx) =
A(kx)

|D(kx)|
·N0(kx) (D.7)

F(kx) = C−1(kx) (D.8)

Taking the first derivative we arrive at (D.9):

F ′(kx) =−C−2(kx)C′(kx) (D.9)

where

C−2(kx) =
(A(kx) ·N0(kx))

−2

|D(kx)|−2 (D.10)a

C′(kx) =
(A(kx) ·N0(kx))

′|D(kx)|− |D(kx)|′(A(kx) ·N0(kx))

|D(kx)|2
(D.10)b

Substituting (D.10) into (D.9) results in (D.11):

F ′(kx) =−(A(kx) ·N0(kx))
−2
(
(A(kx) ·N0(kx))

′|D(kx)|− |D(kx)|′(A(kx) ·N0(kx))

)
(D.11)

Because the modes (kmode) for which we want to evaluate the residues are the result from the
dispersion equation, it is clear that |D(kmode)| = 0. So when the residue is calculated at a pole
of the current spectrum, (D.11) will simplify to (D.12):

F ′(kx) = (A(kx) ·N0(kx))
−1|D(kx)|′ if |D(kx)|= 0 (D.12)

It is now clear that the reciprocal of F ′(kmode) is identical to the residue, Res(kmode), we want
to evaluate (D.13):
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F ′−1(kmode) =
A(kmode)

|D(kmode)|′
·N0(kmode) = Res(kmode) (D.13)

We can conclude that the current contribution due to one propagating mode kmode can be calcu-
lated by:

cmode(x) =− jF ′−1(kmode)e
− jkmodexx̂ (D.14)

Note: For a quick MATLAB implementation, F ′(kx) can be calculated numerically:

F ′(kmode) = [F(kmode +∆k/2)−F(kmode−∆k/2)] · (∆k)−1 (D.15)

where ∆k < Re(kmode)/1000

D.2 Residue in the transverse spectral plane

The integration path in ky determines the result of dispersion equation. From the surface- and
leaky-wave condition (3.26) and the associated discussion regarding the spectral planes in chap-
ter 3, it became clear that when such wave is excited, the surface- or the leaky-wave modes
should be enclosed by the integration path. This is accounted for by adding the residues of
these poles to the integration over the real axis in ky. The location of these poles in ky can be
calculated by:

ky,SFW =
√

k2
SFW − k2

mode (D.16)

Both ±ky,SFW should be enclosed by the integration path. The elements of D(kx) are:

Dn,i(kx) = Dn,i(kx)|R+Dn,i(kx)|+ky,SFW +Dn,i(kx)|−ky,SFW (D.17)

with

Dn,i(kx)|R =
1

2π

∫ ∞

−∞
Gxx(kx,ky)Ct(ky)e− jky(n−i)dydky (D.18)a

Dn,i(kx)|±ky,SFW =
1

2π

∮

γ
Gxx(kx,ky)Ct(ky)e− jky(n−i)dydky (D.18)b

where γ is a circular integration path around±ky,SFW which is clockwise for +ky,SFW and coun-
terclockwise for −ky,SFW . Dn,i(kx)|±ky,SFW can be solved using the residue theorem:

Dn,i(kx)|±ky,SFW =
1

2π

∮

γ
Fn,i(ky)dky

=
1

2π
2π j Res(Fn,i(ky),±ky,SFW )

(D.19)

where
Fn,i(ky) = Gxx(kx,ky)Ct(ky)e− jky(n−i)dy (D.20)

So that:

Res(Fn,i(ky),±ky,SFW ) =
1

(F−1
n,i (ky))′

∣∣∣∣
ky=±ky,SFW

(D.21)
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Appendix E

Numerical implementation and
convergence

The model proposed in this contribution is implemented in a MATLAB software-tool. The
model is considered quasi-analytical as it relies on numerical integration and derivation in the
transverse domain in order to calculate the denominator in Eq. (E.1).

Dn,i(kx) =
1

2π

∫ ∞

−∞
Gxx(kx,ky)Ct(ky)e− jky(n−i)dydky (E.1)

Also, since the printed transmission line is to be analyzed over a specified frequency range, a
suitable discrete range of frequencies has to be chosen. Finally, the poles in the denominator
D(kx) are obtained by solving the dispersion equation by using a Taylor series expansion around
an initial guess point, kguess, for the propagation constant along the line (E.2).

kmode ≈ kguess−C−1(kinit)([C
−1(kinit)]

′)−1 (E.2)

This Taylor series expansion is an approximation. The MATLAB-tool need to have some con-
vergence checks. In this appendix, the numerical implementation is described for determining
a suitable discrete frequency range, a transverse integration range leading to a converged result,
and an iterative procedure for tracking the propagating modes ensuring that the tracking has
converged.

E.1 Discrete frequency range

The start ( fi) and stop ( f f ) frequencies determine the frequency range over which the transmis-
sion line is analyzed. The number of discrete frequency points N f taken is a function of these
frequencies and the frequency step factor kstep. The MATLAB-tool starts at the highest fre-
quency and determines the next frequency as fi+1 = fi−∆ f where ∆ f = kstep · fi. The number
of frequency points calculated will then be:

N f =

⌈
ln
(

fi/ f f
)

ln(1− kstep)

⌉
+1 (E.3)

In the software-tool, the standard setting for fstep = 0.04. Increasing this number will speed up
the code, however enlarging this frequency-step too much can result in difficulties in tracking
the propagation mode. Also, in the case of highly dispersive transmission lines, the linear
interpolation in the wavenumber plot will be misleading.
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E.2 Wavenumber accuracy

The wavenumber accuracy informs about the convergence in tracking the wavenumber. The
program is based on providing an initial guess for the wavenumber and by using a first order
Taylor series expansion around this initial guess point it will iterate towards the true value of
the wavenumber:

knew
init = kinit−C−1(kinit)([C

−1(kinit)]
′)−1 (E.4)

In Eq. (E.4), knew
init will be a new starting point for another iteration. This iteration is repeated

for a maximum of nk (default nk = 10) times or when a convergence ∆k (default ∆k= 5e-5) is
achieved:

∆k =
∣∣∣∣
kcorrection

kinit

∣∣∣∣ (E.5)

When the convergence in tracking the wavenumber is consistently not reached a consideration
needs to be made whether to change nk and/or ∆k. It can be that the convergence goal, ∆k, is
impossible to achieve with a first-order Taylor expansion or that the initial guess-point is too
inaccurate such that nk iterations will not suffice.

So for every frequency point we iterate towards the true value of the wavenumber of the
main propagating mode. The initial guess point is taken to be the wavenumber of the previous
frequency step; for the first frequency it is taken as the average of the propagation constants of
the dielectrics adjacent to the transmission lines as is described in Eq. (E.6).

k(i)init =

√
k2

up + k2
down

2
for i = 1 (E.6)a

k(i)init = k(i−1)
mode for i > 1 (E.6)b

E.3 Integration convergence

An integration convergence check is necessary in order to ensure whether a specified conver-
gence goal is achieved of the value for the denominator Dn,i(kx) in Eq. (E.1). Dn,i(kx) is obtained
by integrating in the transverse spectral domain of the transmission line (ky). The integration
domain, from −∞ and ∞ can of course not be implemented numerically. Therefore, the inte-
gration domain in ky will be increased as long as the increased part of the integration domain
adds a significant value to the total. What is called a significant value is defined by ∆Int (default
∆Int= 5e-5). The integration is also stopped when a maximum number of integration intervals
is used defined by nint (default nint = 300).

The size of the integration step is determined by the integrand of the space-convolution
integral Dn,i(kx) as it contains a Bessel- and a sinc-function and therefore zeros. In the case that
the integration is unfortunately done from a zero to a zero, the convergence constrain can be
met incorrectly as the oscillations due to the Bessel- and sinc-function can give a (almost) zero
integrated integrand. So first the location of the zeros of the integrand is checked

sinc
(

kyws

2

)
= 0

ky,0ws

2
= n ·π
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ky,0 = n · 2π
ws

for n = 1,2, .... The integration step-size is chosen to be between the 10th and 11th zero of this
sinc-function:

ky,integration−step = 10.5 · 2π
ws

(E.7)

The procedure in MATLAB is as follows. First the integrand of Dn,i(kx) will be integrated from
−ky,integration-step to +ky,integration-step which we denote as D1(kx):

D1(kx) =
∫ +ky,int−step

−ky,int−step

· · ·dky (E.8)

After that we will calculate the following contribution of the integral:

D2(kx) =
∫ −ky,int−step

−2·ky,int−step

· · ·dky +
∫ +2·ky,int−step

+ky,int−step

· · ·dky (E.9)

From these two values, the convergence can be checked by comparing the contribution of the
most actual integration with the contribution of the total integration calculated so far:

∆Int =
D2(kx)

D1(kx)+D2(kx)
(E.10)

When the convergence in integration is consistently not reached, a consideration can be made
whether to change nint and/or ∆Int. However, keep in mind that changing these settings can
influence the performance of the program significantly. It can be the case that the integrand is
some structure is slowly decreasing requiring an increase of nint . It can also be that the ∆Int is
unachievable by the numerical integration method in MATLAB (quadgk).

As an example, consider an arbitrary microstrip. We can see the integrand for the first and
second integration step in Figure E.1 and Figure E.2 (for only the positive part of the trans-
verse integration domain). In the case that the integration of Figure E.2 adds less then a certain
threshold to the total integration, we call the integral converged.
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Figure E.1: First step of integration in the trans-
verse domain
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Figure E.2: Second step of integration in the trans-
verse domain
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100 E.3. INTEGRATION CONVERGENCE
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Figure E.3: Transverse integration range vs conductivity

The convergence in iteration depends not only on the dimensions of the structure, but can also
significantly change when, for example, the conductors are not perfect or when the frequency
changes. This example is shown in Figure E.3. The y-axis denotes the number of integration
steps (Eq. (E.7)) which have to be taken before reaching the required convergence limit. An
example is shown in Figure E.3. In this example we took the following convergence limits:

• ∆Int = 1 ·10−4

• ∆k = 1 ·10−3

It can be seen from Figure E.3 that, both in frequency as in conductivity, a significant
change in the number of integration steps is needed before fulfilling the ∆Int integration re-
quirement. Having an automated convergence check, as is explained in this appendix, ensures
the MATLAB-tool that convergences are achieved in both wavenumber tracking as transverse
integration.
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Appendix F

List of abbreviations

List of abbreviations

1D One dimensional
2D Two dimensional
3D Three dimensional
CMFIE Continuity of Magnetic Field Integral Equation
et al. et alii (lat. and others)
etc. et cetera (lat. and so forth)
i.e. id est (lat. that is; in other words; that is to say)
EFIE Electric Field Integral Equation
e.g. exempli gratia (lat. for example; example given)
EM Electromagnetic
FDTD Finite-Difference Time-Domain
FEM Finite Element Method
IE Integral Equation(s)
PEC Perfect Electric Conductor(s)
PPW Parallel-Plate-Waveguide
RS Riemann-sheet
T E Transverse Electric
T EM Transverse Electromagnetic
T M Transverse Magnetic
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Appendix G

Nomenclature

The Nomenclature used throughout the thesis is shown in table G.1.

Table G.1: Nomenclature used in this document.

Quantity Notation

Scalar a
Continuous Operator F

Vector in space domain a
Vector in spectral domain A

Unit vectors x̂, ŷ, ẑ

Matrix in space domain a
Matrix in spectral domain A

Outer product ×
Scalar or dot-product ·

Continuous field quantities in space domain e,h

Continuous field quantities in spectral domain E,H

∆-gap excitation vector s∆
Width of a strip or slot ws

Physical spacing between multiple conductors d
Phase spacing between multiple conductors dy = d +ws

Finite conductivity of a conductor σ
Height of a dielectric slab H

Relative permittivity of a dielectric εr

Loss tangent of a dielectric tan(δ)
Speed of light c

Frequency f
Wavenumber k = β− jα

Propagation constant β
Attenuation constant α

Wavelength in free-space λ0

Wavenumber in free-space k0

Wavelength in a dielectric λd

Wavenumber in a dielectric kd

Wavenumber of the main propagating mode kmode

Wavenumber of a surface-wave pole/branch-point kSFW

Wavenumber of a leaky-wave pole/branch-point kLW
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